
Contents

index 2

code-howtos{IntelliJ 5

code-howtos{bibtex 7

code-howtos{code-quality 8

code-howtos{custom-svg-icons 10

code-howtos{error-handling 12

code-howtos{eventbus 14

code-howtos{faq 16

code-howtos{fetchers 25

code-howtos{http-server 29

code-howtos{javafx 31

code-howtos{jpackage 37

code-howtos{localization 39

code-howtos{logging 42

code-howtos{openo�ce{code-reorganization 44

code-howtos{openo�ce{ooresult-ooerror{ooresult-alternatives 50

code-howtos{openo�ce{ooresult-ooerror 61

code-howtos{openo�ce{order-of-appearance 66

code-howtos{openo�ce{overview 69

code-howtos{openo�ce{problems 76

code-howtos{openo�ce 79

code-howtos{remote-storage-jabdrive 80

code-howtos{remote-storage-sql 87

code-howtos{remote-storage 89

code-howtos{testing 90

code-howtos{tools 95

1

code-howtos{ui-recommendations 97

code-howtos{xmp-parsing 99

code-howtos 101

contributing 106

decisions{0000-use-markdown-architectural-decision-records 107

decisions{0001-use-crowdin-for-translations 108

decisions{0002-use-slf4j-for-logging 109

decisions{0003-use-gradle-as-build-tool 111

decisions{0004-use-mariadb-connector 113

decisions{0005-fully-support-utf8-only-for-latex-�les 115

decisions{0006-only-translated-strings-in-language-�le 117

decisions{0007-human-readable-changelog 119

decisions{0008-use-public-�nal-instead-of-getters 120

decisions{0009-use-plain-junit5-for-testing 121

decisions{0010-use-h2-as-internal-database 124

decisions{0011-test-external-links-in-documentation 125

decisions{0012-handle-di�erent-bibEntry-formats-of-fetchers 127

decisions{0013-add-native-support-biblatex-software 129

decisions{0014-separate-URL-creation-to-enable-proper-logging 131

decisions{0015-support-an-abstract-query-syntax-for-query-conversion134

decisions{0016-mutable-preferences-objects 137

decisions{0017-allow-model-access-logic 138

decisions{0018-use-regular-expression-to-split-multiple-sentence-titles140

decisions{0019-implement-special-�elds-as-separate-�elds 141

decisions{0020-use-Jackson-to-parse-study-yml 143

decisions{0021-keep-study-as-a-dto 145

decisions{0022-remove-stop-words-during-query-transformation 146

2

decisions{0023-localized-preferences 148

decisions{0025-reviewdog-reviews 150

decisions{0026-use-jna-to-determine-default-directory 151

decisions{0027-synchronization 153

decisions{0028-http-return-bibtex-string 155

decisions{0029-c�-export-multiple-entries 157

decisions{0030-use-apache-commons-io-for-directory-monitoring 159

decisions{0031-use-current-tab-for-deciding-style-type-for-oo 161

decisions{0032-store-chats-in-local-user-folder 162

decisions{0033-store-chats-in-mvstore 164

decisions{0034-use-citation-key-for-grouping-chat-messages 166

decisions{0035-generate-embeddings-online 168

decisions{0036-use-textarea-for-chat-content 170

decisions{0037-rag-architecture-implementation 173

decisions{0038-use-entryId-for-bibentries 177

decisions{0039-use-apache-velocity-as-template-engine 178

decisions{0040-display-front-cover-in-preview-tab 181

decisions{0041-use-one-form-for-singular-and-plural 185

decisions{0042-use-webview-for-summarization-content 188

decisions{0043-show-merge-dialog-when-importing-a-single-pdf 190

decisions{adr-template 192

decisions 194

getting-into-the-code{development-strategy 196

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

eclipse 198

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

intellij-11-code-into-ide 201

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

intellij-12-build 205

3

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

intellij-13-code-style 217

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

intellij-89-run-with-intellij 227

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

pre-01-github-account 230

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

pre-02-software 231

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

pre-03-code 232

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

trouble-shooting 234

getting-into-the-code{guidelines-for-setting-up-a-local-workspace{

vscode 237

getting-into-the-code{guidelines-for-setting-up-a-local-workspace 239

getting-into-the-code{high-level-documentation 240

getting-into-the-code 242

requirements{ai 243

requirements 244

teaching 246

4

Developer Documentation

This page presents all development information around JabRef. In case you are a end user,

please head to the user documentation or to the general homepage of JabRef.

On the page Setting up a local workspace, we wrote about the initial steps to get your IDE

running. We strongly recommend to continue reading there. After you successfully cloned and

build JabRef, you are invited to continue reading here.

External: Sync your fork with the JabRef repository

External (): Branches and pull requests: https://github.com/unibas-marcelluethi/software-

engineering/blob/master/docs/week2/exercises/practical-exercises.md

We are very happy that JabRef is part of Software Engineering trainings. Please head to

Teaching for more information on using JabRef as a teaching object and on previous courses

where JabRef was used.

The package org.jabref.cli is responsible for handling the command line options.

During development, one can configure IntelliJ to pass command line parameters:

Overview on Developing JabRef

Starting point for new developers

How tos

•

•

Teaching Exercises

Miscellaneous Hints

Command Line

Passing command line arguments using gradle is currently not possible as all arguments (such

as -Dfile.encoding=windows-1252) are passed to the application.

Without jlink, it is not possible to generate a fat jar any more. During development, the

capabilities of the IDE has to be used.

Diagram showing aspects of groups: Groups.uml.

Architectural decisions for JabRef are recorded.

For new ADRs, please use adr-template.md as basis. More information on MADR is available at

https://adr.github.io/madr/. General information about architectural decision records is

available at https://adr.github.io/.

Q: I get java: package org.jabref.logic.journals does not exist .

A: You have to ignore buildSrc/src/main as source directory in IntelliJ as indicated in our setup

guide.

Also filed as IntelliJ issue IDEA-240250.

Groups

Architectural Decision Records

FAQ

•

Developer Documentation

Code Howtos / IntelliJ Hints

SUMMARY

Did you know that IntelliJ allows for reformatting selected code if you press Ctrl + Alt +

L?

Shift+Shift (AKA double-shift): Open the search dialog.

Ctrl+N: Open the search dialog and select search for a class.

Ctrl+Shift+F: Search everywhere in the code base.

Alt+F1 and then Enter: Locate the file in the search bar on the left side.

Ctrl+Shift+T: Navigate from a class to the test class.

IntelliJ Hints

Key hints for IntelliJ

•

•

•

•

•

Show variable values in IntelliJ

Go to a test case (example: org.jabref.model.entry.BibEntryTest#settingTypeToNullThrowsException1

Set the breakpoint to the first line2

Execute the test3

Go to the settings of the debugger and activate “Show Variable Values in Editor” and

“Show Method Return Values”

4

Figure: Debugger Configuration

Developer Documentation

Code Howtos / JabRef’s handling of BibTeX

The main class to handle a single BibTeX entry is org.jabref.model.entry.BibEntry . The content of

a .bib file is handled in org.jabref.model.database.BibDatabase . Things not written in the .bib file,

but required for handling are stored in org.jabref.model.database.BibDatabaseContext . For instance,

this stores the mode of the library, which can be BibTeX or biblatex .

Standard BibTeX fields known to JabRef are modeled in org.jabref.model.entry.field.StandardField .

A user-defined field not known to JabRef’s code is modelled in

org.jabref.model.entry.field.UnknownField . Typically, to get from a String to a Field , one needs to

use org.jabref.model.entry.field.FieldFactory#parseField(java.lang.String) .

BibTeX allows for referencing other entries by the field crossref

(org.jabref.model.entry.field.StandardField#CROSSREF). Note that BibTeX and biblatex handle this

differently. The method

org.jabref.model.entry.BibEntry#getResolvedFieldOrAlias(org.jabref.model.entry.field.Field,

org.jabref.model.database.BibDatabase) handles this difference.

JabRef’s handling of BibTeX

Cross-references

Developer Documentation

Code Howtos / Code Quality

JabRef has three code style checkers in place:

Checkstyle for basic checks, such as wrong import order.

Gradle Modernizer Plugin for Java library usage checks. It ensures that “modern” Java

concepts are used (e.g., one should use Deque instead of Stack).

OpenRewrite for advanced rules. OpenRewrite can also automatically fix issues. JabRef’s CI

toolchain does NOT automatically rewrite the source code, but checks whether

OpenRewrite would rewrite something. As developer, one can execute ./gradlew rewriteRun

to fix the issues. Note that JabRef is available on the Moderne platform, too.

In case a check fails, the CI automatically adds a comment on the pull request.

We monitor the general source code quality at three places:

codacy is a hosted service to monitor code quality. It thereby combines the results of

available open source code quality checkers such as Checkstyle or PMD. The code quality

analysis for JabRef is available at https://app.codacy.com/gh/JabRef/jabref/dashboard,

especially the list of open issues. In case a rule feels wrong, it is most likely a PMD rule.

codecov is a solution to check code coverage of test cases. The code coverage metrics for

JabRef are available at https://codecov.io/github/JabRef/jabref.

Teamscale is a popular German product analyzing code quality. The analysis results are

available at https://demo.teamscale.com/findings.html#/jabref/?.

We believe that updated dependencies are a sign of maintained code and thus an indicator of

good quality. We use GitHub’s dependabot to keep our versions up to date.

Moreover, we try to test JabRef with the latest Java Development Kit (JDK) builds. Our results

can be seen at the Quality Outreach page.

TestsTests passingpassing

Code Quality

Code style checkers

•

•

•

Monitoring

•

•

•

Up to date dependencies

Statistics

•

codecovcodecov 40%40%

We strongly recommend reading following two books on code quality:

Java by Comparison is a book by three JabRef developers which focuses on code

improvements close to single statements. It is fast to read and one gains much information

from each recommendation discussed in the book.

Effective Java is the standard book for advanced Java programming. Did you know that enum

is the recommended way to enforce a singleton instance of a class? Did you know that one

should refer to objects by their interfaces?

The principles we follow to ensure high code quality in JabRef is stated at our Development

Strategy.

•

Background literature

•

•

Developer Documentation

Code Howtos / Custom SVG icons

JabRef uses Material Design Icons for most buttons on toolbars and panels. While most

required icons are available, some specific ones cannot be found in the standard set, like Vim,

Emacs, etc. Although custom icons might not fit the existing icons perfectly in style and level

of detail, they will fit much better into JabRef than having a color pixel icon between all

Material Design Icons.

This tutorial aims to describe the process of adding missing icons created in a vector drawing

tool like Adobe Illustrator and packing them into a true type font (TTF) to fit seamlessly into

the JabRef framework.

The process consists of 5 steps:

Good icon design requires years of experience and cannot be covered here. Adapting color

icons with a high degree of detail to look good in the flat, one-colored setting is an even

harder task. Therefore, only 3 tips: 1. Look up some tutorials on icon design, 2. reuse the

provided basic shapes in the template, and 3. export your icon in the SVG format.

Use the IcoMoon tool for packing the icons.

Custom SVG icons

Download the template vector graphics from the Material Design Icons webpage. This gives

you a set of existing underlying shapes that are typically used and the correct bounding

boxes. You can design the missing icon based on this template and export it as an SVG file.

1

Pack the set of icons into a TTF with the help of the free IcoMoon tool.2

Replace the existing JabRefMaterialDesign.ttf in the src/main/resources/fonts folder.3

Adapt the class org.jabref.gui.JabRefMaterialDesignIcon to include all icons.4

Adapt the class org.jabref.gui.IconTheme to make the new icons available in JabRef5

Step 1. Designing the icon

Step 2. Packing the icons into a font

Create a new set by importing the json file JabRefMaterialDesign.json.zip1

Next to the icons, click on the hamburger menu, chose “Import to Set” to add a new icon (it

will be added to the front) Rearrange them so that they have the same order as in

org.jabref.gui.JabRefMaterialDesignIcon . This will avoid that you have to change the code

2

Unpack the downloaded font-package and copy the .ttf file under fonts to

src/main/resources/fonts/JabRefMaterialDesign.ttf .

Inside the font-package will be a CSS file that specifies which icon (glyph) is at which code

point. If you have ordered them correctly, you newly designed icon(s) will be at the end and

you can simply append them to org.jabref.gui.JabRefMaterialDesignIcon :

If you added an icon that already existed (but not as flat Material Design Icon), then you need

to change the appropriate line in org.jabref.gui.IconTheme , where the icon is assigned. If you

created a new one, then you need to add a line. You can specify the icon like this:

points for the existing glyphs. In the settings for your icon set, set the Grid to 24. This is

important to get the correct spacing. The name of the font is JabRefMaterialDesign .

Next to the icons, click on the hamburger menu and click “Select all”.3

Proceed with the font creating, set the font property name to JabRefMaterialDesign When your

icon-set is ready, select all of them and download the font-package.

4

Step 3. Replace the existing JabRefMaterialDesign.ttf

Step 4. Adapt the class org.jabref.gui.JabRefMaterialDesignIcon

 TEX_STUDIO("\ue900"),

 TEX_MAKER("\ue901"),

 EMACS("\ue902"),

 OPEN_OFFICE("\ue903"),

 VIM("\ue904"),

 LYX("\ue905"),

 WINEDT("\ue906"),

 ARXIV("\ue907");

Step 5. Adapt the class org.jabref.gui.IconTheme

APPLICATION_EMACS(JabRefMaterialDesignIcon.EMACS)

Developer Documentation

Code Howtos / Error Handling in JabRef

Principles:

All exceptions we throw should be or extend JabRefException ; This is especially important if

the message stored in the Exception should be shown to the user. JabRefException has

already implemented the getLocalizedMessage() method which should be used for such cases

(see details below!).

Catch and wrap all API exceptions (such as IOExceptions) and rethrow them

Example:

Never, ever throw and catch Exception or Throwable

Errors should only be logged when they are finally caught (i.e., logged only once). See

Logging for details.

If the Exception message is intended to be shown to the User in the UI (see below) provide

also a localizedMessage (see JabRefException).

(Rationale and further reading: https://www.baeldung.com/java-exceptions)

Principle: Error messages shown to the User should not contain technical details (e.g.,

underlying exceptions, or even stack traces). Instead, the message should be concise,

understandable for non-programmers and localized. The technical reasons (and stack traces)

for a failure should only be logged.

To show error message two different ways are usually used in JabRef:

showing an error dialog

updating the status bar at the bottom of the main window

Error Handling in JabRef

Throwing and Catching Exceptions

•

•

•

 try {

 // ...

 } catch (IOException ioe) {

 throw new JabRefException("Something went wrong...",

 Localization.lang("Something went wrong...", ioe);

 }

•

•

•

Outputting Errors in the UI

•

•

TODO: Usage of status bar and `DialogService`

Developer Documentation

Code Howtos / Event Bus and Event System

Many times there is a need to provide an object on many locations simultaneously. This design

pattern is quite similar to Java’s Observer, but it is much simpler and readable while having

the same functional sense.

EventBus represents a communication line between multiple components. Objects can be

passed through the bus and reach the listening method of another object which is registered

on that EventBus instance. Hence, the passed object is available as a parameter in the listening

method.

Any listening method has to be annotated with @Subscribe keyword and must have only one

accepting parameter. Furthermore, the object which contains such listening method(s) has to

be registered using the register(Object) method provided by EventBus . The listening methods

can be overloaded by using different parameter types.

post(object) posts an object through the EventBus which has been used to register the

listening/subscribing methods.

Event Bus and Event System

What the EventSystem is used for

Main principle

Register to the EventBus

Posting an object

Short example

/* Listener.java */

import com.google.common.eventbus.Subscribe;

public class Listener {

 private int value = 0;

 @Subscribe

The event package contains some specific events which occur in JabRef.

For example: Every time an entry was added to the database a new EntryAddedEvent is sent

through the eventBus which is located in BibDatabase .

If you want to catch the event you’ll have to register your listener class with the

registerListener(Object listener) method in BibDatabase . EntryAddedEvent provides also methods to

get the inserted BibEntry .

 public void listen(int value) {

 this.value = value;

 }

 public int getValue() {

 return this.value;

 }

}

/* Main.java */

import com.google.common.eventbus.EventBus;

public class Main {

 private static EventBus eventBus = new EventBus();

 public static void main(String[] args) {

 Main main = new Main();

 Listener listener = new Listener();

 eventBus.register(listener);

 eventBus.post(1); // 1 represents the passed event

 // Output should be 1

 System.out.println(listener.getValue());

 }

}

Event handling in JabRef

Developer Documentation

Code Howtos / Frequently Asked Questions (FAQ)

Following is a list of common errors encountered by developers which lead to failing tests, with

their common solutions:

JabRef follows a pre-defined style of code for uniformity and maintainability that must be

adhered to during development. To set up warnings and auto-fixes conforming to these style

rules in your IDE, follow Step 3 of the process to set up a local workspace in the

documentation. Ideally, follow all the set up rules in the documentation end-to-end to avoid

typical set-up errors.

Note: The steps provided in the documentation are for IntelliJ, which is the preferred IDE for

Java development. The checkstyle.xml is also available for VSCode, in the same directory as

mentioned in the steps.

Execute the Gradle task rewriteRun from the rewrite group of the Gradle Tool window in IntelliJ

to apply the automated refactoring and pass the test:

Frequently Asked Questions (FAQ)

Failing tests

Failing Checkstyle tests

Failing OpenRewrite tests

Background: OpenRewrite is an automated refactoring ecosystem for source code.

You have probably used Strings that are visible on the UI (to the user) but not wrapped them

using Localization.lang(...) and added them to the localization properties file.

Read more about the background and format of localization in JabRef here.

Navigate to the unused key-value pairs in the file and remove them. You can always click on

the details of the failing test to pinpoint which keys are unused.

Background: There are localization keys in the localization properties file that are not used in

the code, probably due to the removal of existing code. Read more about the background and

org.jabref.logic.l10n.LocalizationConsistencyTest findMissingLocalizationKeys FAILED

org.jabref.logic.l10n.LocalizationConsistencyTest findObsoleteLocalizationKeys FAILED

format of localization in JabRef here.

Check the directory src/main/resources/csl-styles . If it is missing or empty, run git submodule

update . Now, check inside if ieee.csl exists. If it does not, run git reset --hard inside that

directory.

Check the directory src/main/resources/csl-locales . If it is missing or empty, run git submodule

update . If still not fixed, run git reset --hard inside that directory.

Check if you’ve used System.out.println(...) (the standard output stream) to log anything into

the console. This is an architectural violation, as you should use the Logger instead for

logging. More details on how to log can be found here.

One common case when this test fails is when you put any class purely containing business

logic inside the model package (i.e., inside the directory org/jabref/model/). To fix this, shift the

class to a sub-package within the logic package (i.e., the directory org/jabref/logic/). An

efficient way to do this is to use IntelliJ’s built-in refactoring capabilities - right-click on the file,

go to “Refactor” and use “Move Class”. The import statement for all the classes using this

org.jabref.logic.citationstyle.CitationStyle discoverCitationStyles ERROR: Could not find

any citation style. Tried with /ieee.csl.

java.lang.IllegalArgumentException : Unable to load locale en-US ERROR: Could not

generate BibEntry citation. The CSL engine could not create a preview for your

item.

org.jabref.architecture.MainArchitectureTest restrictStandardStreams FAILED

org.jabref.architecture.MainArchitectureTest doNotUseLogicInModel FAILED

class will be automatically adjusted according to the new location.

More information on the architecture can be found at ../getting-into-the-code/high-level-

documentation.md.

Check external href links in the documentation / check-links (push) FAILED

This test is triggered when any kind of documentation is touched (be it the JabRef docs, or

JavaDoc in code). If you changed something in the documentation, and particularly

added/changed any links (to external files or websites), check if the links are correct and

working. If you didn’t change/add any link, or added correct links, the test is most probably

failing due to any of the existing links being broken, and thus can be ignored (in the context of

your contribution).

Fetcher tests are run when any file in the .../fetcher directory has been touched. If you have

changed any fetcher logic, check if the changes are correct. You can look for more details on

how to locally run fetcher tests here. Otherwise, since these tests depend on remote services,

their failure can also be caused by the network or an external server, and thus can be ignored

in the context of your contribution. For more information, you can look here.

Failing Fetcher tests

Gradle outputs

ANTLR Tool version 4.12.0 used for code generation does not match the current runtime version

4.13.1

Execute the Gradle task clean from the build group of the Gradle Tool Window in IntelliJ:

Execute gradle task clean from the build group of the Gradle Tool Window in IntelliJ.

You probably chose the wrong gradle task:

BstVMVisitor.java:157: error: package BstParser does not exist

No test candidates found

Sometimes, when contributing to JabRef, you may see abbrv.jabref.org or csl-styles or csl-

locales among the changed files in your pull request. This means that you have accidentally

committed your local submodules into the branch.

JabRef needs external submodules (such as CSL style files) for some of its respective features.

These are cloned once when you set up a local development environment, using --recurse-

submodules (you may have noticed). These submodules, in the main branch, are automatically

periodically updated but not fetched into local again when you pull, as they are set to be

ignored in .gitmodules (this is to avoid merge conflicts). So when remote has updated

submodules, and your local has the old ones, when you stage all files, these changes are

noticed.

What’s strange (mostly an IntelliJ bug): Regardless of CLI or GUI, These changes should ideally

not be noticed on staging, as per the .gitmodules configuration. However, that is somehow

overruled when using IntelliJ’s CLI.

For csl-styles :

Submodules

The problem

Context

Fix

And similarly for csl-locales or abbrv.jabref.org .

git merge origin/main

git checkout main -- src/main/resources/csl-styles

... git commit ...

git push

ALTERNATIVE METHOD (IF THE ABOVE DOESN’T WORK)

Edit .gitmodules : comment out ignore = all (for the respective submodules you are trying to

reset)

 # ignore = all

1

cd into the changed submodules directory (lets say csl-styles was changed):2

 cd src/main/resources/csl-styles

Find the latest submodule commit id from remote (github):

Here, in the case of csl-styles , it is 4e0902d .

3

Checkout the commit:4

 git checkout 4e0902d

Now, IntelliJ’s commit tab will notice that the submodules have been modified. This means

we are on the right track.

5

To avoid this, avoid staging using git add . from CLI. Preferably use a GUI-based git manager,

such as the one built in IntelliJ or open git gui from the command line. Even if you accidentally

stage them, don’t commit all files, selectively commit the files you touched using the GUI

based tool, and push.

Use IntelliJ’s git manager (commit tab) or git gui to commit submodule changes only.

Repeat steps 2-5 for other submodules that are shown as modified in the PR. Then, push

these changes.

6

Revert the changes in .gitmodules (that you made in step 1).7

Prevention

Developer Documentation

Code Howtos / Fetchers

Fetchers are the implementation of the search using online services. Some fetchers require

API keys to get them working. To get the fetchers running in a JabRef development setup, the

keys need to be placed in the respective environment variable. The following table lists the

respective fetchers, where to get the key from and the environment variable where the key

has to be placed.

Service Key Source Environment Variable R

IEEEXplore IEEE Xplore API portal IEEEAPIKey 20

MathSciNet (none) (none)

De

on

cu

ne

SAO/NASA

Astrophysics

Data System

ADS UI AstrophysicsDataSystemAPIKey

50

ca

ScienceDirect ScienceDirectApiKey

SemanticScholar
https://www.semanticscholar.org/product/api#api-

key-form
SemanticScholarApiKey

Springer Nature Springer Nature API Portal SpringerNatureAPIKey

50

ca

Zentralblatt

Math
(none) (none)

De

on

cu

ne

Biodiversity

Heritage Library
Biodiversitylibrary BiodiversityHeritageApiKey -

“Depending on the current network” means that it depends on whether your request is routed

through a network having paid access. For instance, some universities have subscriptions to

MathSciNet.

On Windows, you have to log off and log on to let IntelliJ know about the environment variable

change. Execute the gradle task processResources in the group “others” within IntelliJ to ensure

Fetchers

the values have been correctly written. Now, the fetcher tests should run without issues.

JabRef supports different kinds of fetchers:

EntryBasedFetcher : Completes an existing bibliographic entry with information retrieved by

the fetcher

FulltextFetcher : Searches for a PDF for an exiting bibliography entry

SearchBasedFetcher : Searches providers using a given query and returns a set of (new)

bibliography entry. The user-facing side is implemented in the UI described at

https://docs.jabref.org/collect/import-using-online-bibliographic-database.

There are more fetchers supported by JabRef. Investigate the package org.jabref.logic.importer .

Another possibility is to investigate the inheritance relation of WebFetcher (Ctrl+H in IntelliJ).

all fulltext fetchers run in parallel

the result with the highest priority wins

InterruptedException ExecutionException CancellationException are ignored

SOURCE (highest): definitive URL for a particular paper

PUBLISHER : any publisher library

PREPRINT : any preprint library that might include non final publications of a paper

META_SEARCH : meta search engines

UNKNOWN (lowest): anything else not fitting the above categories

All fetchers are contained in the package org.jabref.logic.importer.fetcher . Here we list the trust

levels of some of them:

DOI: SOURCE, as the DOI is always forwarded to the correct publisher page for the paper

ScienceDirect: Publisher

Springer: Publisher

ACS: Publisher

IEEE: Publisher

Google Scholar: META_SEARCH, because it is a search engine

Arxiv: PREPRINT, because preprints are published there

OpenAccessDOI: META_SEARCH

Reasoning:

•

•

•

Fulltext Fetchers

•

•

•

Trust Levels

•

•

•

•

•

Current trust levels

•

•

•

•

•

•

•

•

A DOI uniquely identifies a paper. Per definition, a DOI leads to the right paper. Everything

else is good guessing.

We assume the DOI resolution surely points to the correct paper and that publisher fetches

may have errors: For instance, a title of a paper may lead to different publications of it. One

the conference version, the other the journal version. –> the PDF could be chosen

randomly

Code was first introduced at PR#3882.

The keys are placed into the build.properties file.

In build.gradle , these variables are filled:

The BuildInfo class reads from that file and the key needs to be put into the map of default API

keys in JabRefCliPreferences::getDefaultFetcherKeys .

The fetcher api key can then be obtained by calling the preferences.

When executing ./gradlew run , gradle executes processResources and populates

build/build.properties accordingly. However, when working directly in the IDE, Eclipse keeps

reading build.properties from src/main/resources . In IntelliJ, the task JabRef Main is executing

./gradlew processResources before running JabRef from the IDE to ensure the build.properties is

properly populated.

Fetcher tests are run when a PR contains changes touching any file in the

src/main/java/org/jabref/logic/importer/fetcher/ directory. Since these tests rely on remote

services, some of them may fail due to the network or the external server.

To learn more about doing fetcher tests locally, see Fetchers in tests in Testing.

•

•

Background on embedding the keys in JabRef

springerNatureAPIKey=${springerNatureAPIKey}

"springerNatureAPIKey" : System.getenv('SpringerNatureAPIKey')

keys.put(SpringerFetcher.FETCHER_NAME, buildInfo.springerNatureAPIKey);

importerPreferences.getApiKey(SpringerFetcher.FETCHER_NAME);

Committing and pushing changes to fetcher files

Developer Documentation

Code Howtos / HTTP Server

JabRef has a built-in http server. For example, the resource for a library is implemented at

org.jabref.http.server.LibraryResource .

The class starting the server is org.jabref.http.server.Server .

Test files to server can be passed as arguments. If no files are passed, the last opened files are

served. If that list is also empty, the file src/main/resources/org/jabref/http/server/http-server-

demo.bib is served.

Does not work.

Current try:

However, there are with ForkJoin (discussion at https://discuss.gradle.org/t/is-it-ok-to-use-

collection-parallelstream-or-other-potentially-multi-threaded-code-within-gradle-plugin-

code/28003)

Gradle output:

IntelliJ output, if org.jabref.http.server.Server#main is executed:

HTTP Server

Start http server

Starting with gradle

./gradlew run -Pcomment=httpserver

> Task :run

2023-04-22 11:30:59 [main] org.jabref.http.server.Server.main()

DEBUG: Libraries served: [C:\git-repositories\jabref-all\jabref\src\main\resources\org\jabref\http\serve

2023-04-22 11:30:59 [main] org.jabref.http.server.Server.startServer()

DEBUG: Starting server...

<============-> 92% EXECUTING [2m 27s]

> :run

DEBUG: Starting server...

2023-04-22 11:44:59 [ForkJoinPool.commonPool-worker-1] org.glassfish.grizzly.http.server.NetworkListener

INFO: Started listener bound to [localhost:6051]

2023-04-22 11:44:59 [ForkJoinPool.commonPool-worker-1] org.glassfish.grizzly.http.server.HttpServer.star

IntelliJ Ultimate offers a Markdown-based http-client. One has to open the file

src/test/java/org/jabref/testutils/interactive/http/rest-api.http . Then, there are play buttons

appearing for interacting with the server.

When interacting with the Microsoft Word AddIn, a SSL-based connection is required. The

Word-AddIn is currentely under development.

(Based on https://stackoverflow.com/a/57511038/873282)

Howto for Windows - other operating systems work similar:

Note: If you do not do this, you get following error message:

INFO: [HttpServer] Started.

2023-04-22 11:44:59 [ForkJoinPool.commonPool-worker-1] org.jabref.http.server.Server.lambda$startServer$

DEBUG: Server started.

Developing with IntelliJ

Get SSL Working

As admin choco install mkcert1

As admin: mkcert -install2

cd %APPDATA%\..\local\org.jabref\jabref\ssl3

mkcert -pkcs12 jabref.desktop jabref localhost 127.0.0.1 ::14

Rename the file to server.p125

Could not find server key store C:\Users\USERNAME\AppData\Local\org.jabref\jabref\ssl\server.p12.

Developer Documentation

Code Howtos / JavaFX

JavaFX is an open source, next generation client application platform for desktop, mobile and

embedded systems based on JavaSE. It is a collaborative effort by many individuals and

companies with the goal of producing a modern, efficient, and fully featured toolkit for

developing rich client applications.

JavaFX is used on JabRef for the user interface.

JavaFX Documentation project: Collected information on JavaFX in a central place

curated list of awesome JavaFX frameworks, libraries, books and etc…

FXTutorials A wide range of practical tutorials focusing on Java, JavaFX and FXGL

ControlsFX amazing collection of controls

CSS Reference

mvvm framework

Validation framework

additional bindings or EasyBind

Undo manager

Docking manager or DockFX

Kubed: data visualization (inspired by d3)

Foojay Java and JavaFX tutorials

FXExperience JavaFX Links of the week

The goal of the MVVM architecture is to separate the state/behavior from the appearance of the ui.

This is archived by dividing JabRef into different layers, each having a clear responsibility.

The Model contains the business logic and data structures. These aspects are again

encapsulated in the logic and model package, respectively.

The View controls the appearance and structure of the UI. It is usually defined in a FXML file.

View model converts the data from logic and model in a form that is easily usable in the gui.

Thus it controls the state of the View. Moreover, the ViewModel contains all the logic needed to

change the current state of the UI or perform an action. These actions are usually passed down

to the logic package, after some data validation. The important aspect is that the ViewModel

JavaFX

Resources

•

•

•

•

•

•

•

•

•

•

•

•

Resources of historical interest

•

Architecture: Model - View - (Controller) - ViewModel (MV(C)VM)

•

•

•

contains all the ui-related logic but does not have direct access to the controls defined in the

View. Hence, the ViewModel can easily be tested by unit tests.

The Controller initializes the view model and binds it to the view. In an ideal world all the

binding would already be done directly in the FXML. But JavaFX’s binding expressions are not

yet powerful enough to accomplish this. It is important to keep in mind that the Controller

should be as minimalistic as possible. Especially one should resist the temptation to validate

inputs in the controller. The ViewModel should handle data validation! It is often convenient to

load the FXML file directly from the controller.

The only class which access model and logic classes is the ViewModel. Controller and View have

only access the ViewModel and never the backend. The ViewModel does not know the Controller or

View.

More details about the MVVM pattern can be found in an article by Microsoft and in an article

focusing on the implementation with JavaFX.

The ViewModel should derive from AbstractViewModel

Add a (readonly) property as a private field and generate the getters according to the JavaFX

bean conventions:

Create constructor which initializes the fields to their default values. Write tests to ensure that

everything works as expected!

Add methods which allow interaction. Again, don’t forget to write tests!

•

Example

VIEWMODEL

•

public class MyDialogViewModel extends AbstractViewModel {

}

•

private final ReadOnlyStringWrapper heading = new ReadOnlyStringWrapper();

public ReadOnlyStringProperty headingProperty() {

 return heading.getReadOnlyProperty();

}

public String getHeading() {

 return heading.get();

}

•

public MyDialogViewModel(Dependency dependency) {

 this.dependency = Objects.requireNonNull(dependency);

 heading.set("Hello " + dependency.getUserName());

}

•

The “code-behind” part of the view, which binds the View to the ViewModel .

The usual convention is that the controller ends on the suffix *View . Dialogs should derive from

BaseDialog .

You get access to nodes in the FXML file by declaring them with the @FXML annotation.

Dependencies can easily be injected into the controller using the @Inject annotation.

It is convenient to load the FXML-view directly from the controller class.

The FXML file is loaded using ViewLoader based on the name of the class passed to view . To make

this convention-over-configuration approach work, both the FXML file and the View class should

have the same name and should be located in the same package.

Note that fields annotated with @FXML or @Inject only become accessible after ViewLoader.load() is

called.

a View class that loads the FXML file.

Dialogs should use setResultConverter to convert the data entered in the dialog to the desired

result. This conversion should be done by the view model and not the controller.

public void shutdown() {

 heading.set("Goodbye!");

}

VIEW - CONTROLLER

•

•

public class AboutDialogView extends BaseDialog<Void>

•

@FXML protected Button helloButton;

@FXML protected ImageView iconImage;

•

@Inject private DialogService dialogService;

•

private Dependency dependency;

public AboutDialogView(Dependency dependency) {

 this.dependency = dependency;

 this.setTitle(Localization.lang("About JabRef"));

 ViewLoader.view(this)

 .load()

 .setAsDialogPane(this);

}

•

The initialize method may use data-binding to connect the ui-controls and the ViewModel .

However, it is recommended to do as much binding as possible directly in the FXML-file.

calling the view model:

The view consists a FXML file MyDialog.fxml which defines the structure and the layout of the UI.

Moreover, the FXML file may be accompanied by a style file that should have the same name as

the FXML file but with a css ending, e.g., MyDialog.css . It is recommended to use a graphical design

tools like SceneBuilder to edit the FXML file. The tool Scenic View is very helpful in debugging

styling issues.

The following expressions can be used in FXML attributes, according to the official documentation

Type Expression Value point to Remark

Location @image.png

path relative to the

current FXML file

Resource %textToBeTranslated key in ResourceBundle

Attribute

variable
$idOfControl or $variable

named control or variable

in controller (may be path

in the namespace)

resolved only once at load

time

setResultConverter(button -> {

 if (button == ButtonType.OK) {

 return viewModel.getData();

 }

 return null;

});

•

@FXML

private void initialize() {

 viewModel = new AboutDialogViewModel(dialogService, dependency, ...);

 helloLabel.textProperty().bind(viewModel.helloMessageProperty());

}

•

@FXML

private void openJabrefWebsite() {

 viewModel.openJabrefWebsite();

}

VIEW - FXML

FXML

Type Expression Value point to Remark

Expression

binding
${expression}

expression, for example

textField.text

changes to source are

propagated

Bidirectional

expression

binding

#{expression} expression

changes are propagated in

both directions (not yet

implemented in JavaFX, see

feature request)

Event handler #nameOfEventHandler

name of the event

handler method in the

controller

Constant

<text><Strings

fx:constant="MYSTRING"/>

</text>

constant (here MYSTRING in

the Strings class)

All radio buttons that should be grouped together need to have a ToggleGroup defined in the FXML

code Example:

<VBox>

 <fx:define>

 <ToggleGroup fx:id="citeToggleGroup"/>

 </fx:define>

 <children>

 <RadioButton fx:id="inPar" minWidth="-Infinity" mnemonicParsing="false"

 text="%Cite selected entries between parenthesis" toggleGroup="$citeToggleGroup"/>

 <RadioButton fx:id="inText" minWidth="-Infinity" mnemonicParsing="false"

 text="%Cite selected entries with in-text citation" toggleGroup="$citeToggleGroup"/>

 <Label minWidth="-Infinity" text="%Extra information (e.g. page number)"/>

 <TextField fx:id="pageInfo"/>

 </children>

</VBox>

All dialogs should be displayed to the user via DialogService interface methods. DialogService

provides methods to display various dialogs (including custom ones) to the user. It also ensures the

displayed dialog opens on the correct window via initOwner() (for cases where the user has multiple

screens). The following code snippet demonstrates how a custom dialog is displayed to the user:

If an instance of DialogService is unavailable within current class/scope in which the dialog needs to

be displayed, DialogService can be instantiated via the code snippet shown as follows:

JavaFX Radio Buttons Example

JavaFX Dialogs

dialogService.showCustomDialog(new DocumentViewerView());

JabRef makes heavy use of Properties and Bindings. These are wrappers around Observables. A

good explanation on the concept can be found here: JavaFX Bindings and Properties

bidirectional binding in FXML, see official feature request

DialogService dialogService = Injector.instantiateModelOrService(DialogService.class);

Properties and Bindings

Features missing in JavaFX

•

Developer Documentation

Code Howtos / JPackage: Creating a binary and debug it

JabRef uses jpackage to build binary application bundles and installers for Windows, Linux, and

macOS. For Gradle, we use the Badass JLink Plugin.

Preparation: Install WiX Toolset

Create the application image:

./gradlew -PprojVersion="5.0.50013" -PprojVersionInfo="5.0-ci.13--2020-03-05--c8e5924" jpackageImage

Create the installer:

./gradlew -PprojVersion="5.0.50013" -PprojVersionInfo="5.0-ci.13--2020-03-05--c8e5924" jpackage

Sometimes issues with modularity only arise in the installed version and do not occur if you

run from source. Using remote debugging, it’s still possible to hook your IDE into the running

JabRef application to enable debugging.

JPackage: Creating a binary and debug it

Build Windows binaries locally

Open administrative shell1

Use Chocolatey to install it: choco install wixtoolset2

Debugging jpackage installations

Debugging on Windows

Open build.gradle , under jlink options remove --strip-debug1

Build using jpackageImage (or let the CI build a new version)2

Modify the build\image\JabRef\runtime\bin\Jabref.bat file, replace the last line with3

 pushd %DIR% & %JAVA_EXEC% -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n -p "

Open your IDE and add a “Remote Debugging Configuration” for localhost:80004

Start JabRef by running the above bat file5

Connect with your IDE using remote debugging6

Developer Documentation

Code Howtos / Localization

More information about this topic from the translator side is provided at Translating JabRef

Interface.

All labeled UI elements, descriptions and messages shown to the user should be localized, i.e.,

should be displayed in the chosen language.

JabRef uses ResourceBundles (see Oracle Tutorial) to store key=value pairs for each String to be

localized.

To show a localized String the following org.jabref.logic.l10n.Localization has to be used. The

Class currently provides three methods to obtain translated strings:

The actual usage might look like:

To write a localized string in FXML file, prepend it with % , like in this code:

Localization

Localization in Java code

 public static String lang(String key);

 public static String lang(String key, String... params);

 public static String menuTitle(String key, String... params);

 Localization.lang("Get me a translated String");

 Localization.lang("Using %0 or more %1 is also possible", "one", "parameter");

 Localization.menuTitle("Used for Menus only");

Localization in FXML

<HBox alignment="CENTER_LEFT">

 <Label styleClass="space-after" text="%Want to help?" wrapText="true"/>

 <Hyperlink onAction="#openDonation" text="%Make a donation"/>

 <Label styleClass="space" text="%or" wrapText="true"/>

 <Hyperlink onAction="#openGithub" text="%get involved"/>

</HBox>

Use the String you want to localize directly, do not use members or local variables:

Localization.lang("Translate me"); instead of Localization.lang(someVariable) (possibly in the

form someVariable = Localization.lang("Translate me")

Use %x -variables where appropriate: Localization.lang("Exported %0 entry(s).", number) instead

of Localization.lang("Exported ") + number + Localization.lang(" entry(s).");

Use a full stop/period (“.”) to end full sentences

For pluralization, use a combined form. E.g., Localization.lang("checked %0 entry(s)") .

The tests in org.jabref.logic.l10n.LocalizationConsistencyTest check whether translation strings

appear correctly in the resource bundles.

If the language is a variant of a language zh_CN or pt_BR it is necessary to add a language

mapping for Crowdin to the crowdin.yml file in the root. Of course the properties file also has

to be named according to the language code and locale.

The localization is tested via the class LocalizationConsistencyTest.

General hints

•

•

•

•

Checking for correctness

Adding a new key

Add new Localization.lang("KEY") to Java file. Run the

org.jabref.logic.LocalizationConsistencyTest .

1

Tests fail. In the test output a snippet is generated which must be added to the English

translation file.

2

Add snippet to English translation file located at src/main/resources/l10n/JabRef_en.properties3

Please do not add translations for other languages directly in the properties. They will be

overwritten by Crowdin

4

Adding a new Language

Add the new Language to the Language enum in

https://github.com/JabRef/jabref/blob/master/src/main/java/org/jabref/logic/l10n/Language.j

ava

1

Create an empty <locale code>.properties file2

Configure the new language in Crowdin3

Background information

Developer Documentation

Code Howtos / Logging

JabRef uses the logging facade SLF4j. All log messages are passed internally to tinylog which

handles any filtering, formatting and writing of log messages.

Obtaining a logger for a class:

Please always use LOGGER.debug for debugging.

Example:

Enable logging in tinylog.properties :

If the logging event is caused by an exception, please add the exception to the log message

as:

When running tests, tinylog-test.properties is used. It is located under src/test/resources . As

default, only info is logged. When developing, it makes sense to use debug as log level. One

can change the log level per class using the pattern level@class=debug is set to debug . In the

.properties file, this is done for org.jabref.model.entry.BibEntry .

SLF4J also support parameterized logging, e.g. if you want to print out multiple arguments in a

log statement use a pair of curly braces ({}). Head to

https://www.slf4j.org/faq.html#logging_performance for examples.

Logging

private static final Logger LOGGER = LoggerFactory.getLogger(<ClassName>.class);

String example = "example";

LOGGER.debug("Some state {}", example);

level@org.jabref.example.ExampleClass = debug

 catch (SomeException e) {

 LOGGER.warn("Warning text.", e);

 ...

 }

Further reading

Developer Documentation

Code Howtos / The LibreOffice Panel / Code reorganization

Why

Separate backend

Separate GUI code (dialogs) and logic

Data is now organized around Citation , CitationGroup instead of arrays for citation group

fields, and arrays of arrays for citation fields.

Also take citationKey as the central data unit, this is what we start with: unresolved

citationKeys do not stop processing. Although we cannot sort them by author and year, we

can still emit a marker that acts as a placeholder and shows the user the problematic key.

document content (UNO)

frontend

actions

OOBibBase2

backend styleOOTextIntoOOrangesort
data in doc, ranges order ranges fill ranges markup text

XTextDocument

Backend, CitationGroups

GUI: BibEntry, BibDatabase, OOBibStyle
provides input in terms of these types

provides connection to doc

Cite, Update, Merge, Separate, Manage, Export

Connect

Load Style

Create OOFrontend instance

Catch exceptions, Undo
Forward requests to actions
Check preconditions

locations
citation keys

pageInfo
citation type

lookup, localOrder, number,
uniqueLetter, sort bibliography,
format citationMarkers,
format bibliography

or visually
within XText

checkRangeOverlaps, checkRangeOverlapsWithCursor

connects the parts below
getVisuallySortedCitationGroups, imposeGlobalOrder
UpdateCitationMarkers, UpdateBibliography

lock screen refresh
GUI-independent part of actions

Code reorganization

•

•

•

Result

Layers

model

util : general utilities

(OOPair , OOTuple3) collect two or three objects without creating a new class

OOResult : while an Optional.empty can comunicate failure, it cannot provide details.

OOResult allows an arbitrary error object to be provided in case of failure.

OOVoidResult : for functions returning no result on success, only diagnostics on failure.

OOListUtil : some utilities working on List

uno : helpers for various tasks via UNO.

These are conceptually independent of JabRef code and logic.

ootext : to separate decisions on the format of references and citation marks from the

actual insertion into the document, the earlier method

OOUtil.insertOOFormattedTextAtCurrentLocation was extended to handle new tags that

describe actions earlier done in code.

This became OOTextIntoOO.write

(change) Now all output to the document goes through this, not only those from

Layout. This allows the citation markers and jstyle:Title to use these tags.

This allows some backward-compatible extensions to jstyle.

(change) Added some extra keywords, in {prefix}_MARKUP_BEFORE ,

{prefix}_MARKUP_AFTER pairs to allow bracketing some parts of citation marks with

text and/or open/close tag pairs.

OOFormat contains helpers to create the appropriate tags

OOText formalizes the distinction from String . I did not change String to OOText in old

code, (in particular in OOStyle).

rangesort : ordering objects that have an XTextRange , optionally with an extra integer to

break ties.

RangeSort.partitionAndSortRanges : since XTextRangeCompare can only compare XTextRange

values in the same XText , we partition them accordingly and only sort within each

partition.

RangeSortable (interface), RangeSortEntry (implements) :

When we replace XTextRange of citation marks in footnotes with the range of the

footnote mark, multiple citation marks may be mapped to the same location. To

preserve the order between these, RangeSortable allows this order to be indicated by

returning appropriate indices from getIndexInPosition

RangeSortVisual : sort in top-to-bottom left-to-right order.

Needs a functional XTextViewCursor .

Works on RangeSortable values.

FunctionalTextViewCursor : helper to get a functional XTextViewCursor (cannot always)

By directories

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

RangeOverlapWithin : check for overlaps within a set of XTextRange values. Probably

O(n*log(n)). Used for all-to-all check of protected ranges.

RangeOverlapBetween : check for overlaps between two sets of XTextRange values.

Assumes one set is small. O(n*k). Used for checking if the cursor is in a protected

range.

backend : interfaces to be provided by backends.

May change as new backends may need different APIs.

style : data structures and interfaces used while going from ordered list of citation

groups to formatted citation markers and bibliography. Does not communicate with the

document. Too long to fit here, starting a new section.

At the core,

we have Citation values

represented in the document by their citationKey

each may have a pageInfo

A citation group (CitationGroup) has

a list of citations (citationsInStorageOrder)

an identifier CitationGroupId cgid

this allows to refer to the group

also used to associate the group to its citation markers location (outside the style

part, in Backend52)

OODataModel dataModel is here, in order to handle old (Jabref5.2) structure where pageInfo

belonged to CitationGroup not Citation

referenceMarkNameForLinking is optional: can be used to crosslink to the citation marker from

the bibliography.

CitationGroups represents the collection of citation groups.

Processing starts with creating a CitationGroups instance from the data stored in the

document.

CitedKey represents a cited source, with ordered back references (using CitationPath) to the

corresponding citations.

CitedKeys is just an order-preserving collection of CitedKeys that also supports lookup by

citationKey . While producing citation markers, we also create a corresponding CitedKeys

instance, and store it in CitationGroups.bibliography . This is already sorted, its entries have

uniqueLetter or number assigned, but not converted to markup yet.

Common processing steps:

We need globalOrder for the citation groups (provided externally)

CitationGroups.setGlobalOrder()

•

•

•

•

model/style

•

•

•

•

•

•

•

•

•

•

•

•

•

•

We need to look up each citationKey in the bibliography databases:

CitationGroups.lookupCitations collects the cited keys, looks up each, then distributes the

results to the citations. Uses a temporary CitedKeys instance, based on unsorted citations

and citation groups.

CitationGroups.imposeLocalOrder fills localOrder in each CitationGroup

Now we have order of appearance for the citations (globalOrder and localOrder).

We can create a CitedKeys instance (bibliography) according to this order.

For citations numbered in order of first appearance we number the sources and distribute

the numbers to the corresponding citations.

For citations numbered in order of bibliography, we sort the bibliography, number,

distribute.

For author-year citations we have to decide on the letters uniqueLetter used to distinguish

sources. This needs order of first appearance of the sources and recognizing clashing

citation markers. This is done in logic, in OOProcessAuthorYearMarkers.createUniqueLetters()

We also mark first appearance of each source (setIsFirstAppearanceOfSourceInCitations)

The entry point for this processing is: OOProcess.produceCitationMarkers .

It fills

each CitationGroup.citationMarker

CitationGroups.bibliography

From bibliography OOFormatBibliography.formatBibliography() creates an OOText ready to be

written to the document.

StyleLoader : not changed (knows about default styles) Used by GUI

OOPreFormatter : LaTeX code to unicode and OOText tags. (not changed)

OOBibStyle : is mostly concerned by loading/parsing jstyle files and presenting its pieces to

the rest. Originally it also contains code to format numeric and author-year citation

markers.

Details of their new implementations are in OOBibStyleGetNumCitationMarker and

OOBibStyleGetCitationMarker

The new implementations

support pageInfo for each citation

support unresolved citations

instead of List<Integer> and (List<BibEntry> plus arrays and database) they expect

more self-contained entries List<CitationMarkerNumericEntry> , List<CitationMarkerEntry> .

We have distinct methods for getNormalizedCitationMarker(CitationMarkerNormEntry) and

getNumCitationMarkerForBibliography(CitationMarkerNumericBibEntry) .

•

•

•

•

•

•

•

•

•

•

•

logic/style

•

•

•

•

•

•

•

•

•

The corresponding interfaces in model/style:

CitationMarkerNumericEntry

CitationMarkerEntry

CitationMarkerNumericBibEntry

CitationMarkerNormEntry

describe their expected input entries.

OOProcess.produceCitationMarkers is the main entry point for style application. Calls to specific

implementations in OOProcessCitationKeyMarkers , OOProcessNumericMarkers and

OOProcessAuthorYearMarkers according to jstyle flags.

Details of encoding and retrieving data stored in a document as well as the citation maker

locations. Also contains dataModel-dependent code (which could probably be moved out once

the datamodel is settled).

Creating and finding the bibliography (providing a cursor to write at) should be here too.

These are currently in UpdateBibliography

OOFrontend : has a Backend and CitationGroups

Its constructor creates a backend, reads data from the document and creates a

CitationGroups instance.

provides functionality that requires both access to the document and the CitationGroups

instance

RangeForOverlapCheck used in OOFrontend

UpdateBibliography : Create, find and update the bibliography in the document using output

from produceCitationMarkers()

UpdateCitationMarkers create CitationGroup , update citation markers using output from

produceCitationMarkers()

GUI-independent part of implementations of GUI actions.

OOError : common error messages and dialog titles

adds title to Jabrefexception

converts from some common exception types using type-specific message

contains some dialog messages that do not correspond to exceptions

•

•

•

•

•

•

logic/backend

logic/frontend

•

•

•

•

•

•

logic/action

gui

•

•

•

•

OOBibBase2 : most activity was moved out from here to parts discussed above.

connecting / selecting a document moved to OOBibBaseConnect

the rest connects higher parts of the GUI to actions in logic

does argument and precondition checking

catches all exceptions

shows error and warning dialogs

adds enterUndoContext , leaveUndoContext around action code

•

•

•

•

•

•

•

Developer Documentation

Code Howtos / The LibreOffice Panel / Alternatives to using OOResult and OOVoidResult in OOBibBase

(Talk about ADRs prompted me to think about alternatives to what I used.)

Situation:

some tests return no data, only report problems

we may need to get some resources that might not be available (for example: connection

to a document, a functional textview cursor)

some test depend on these resources

One strategy could be to use a single try-catch around the whole body, then showing a

message based on the type of exceptions thrown.

This our base case.

It is not clear from the code, nor within the catch branches (unless we start looking into stack

traces) which call (f() , g(a) or realAction(a,b)) resulted in the exception. This limits the

specificity of the message and makes it hard to think about the “why” can we get this

exception here?

Alternatives to using OOResult and

OOVoidResult in OOBibBase

•

•

•

[base case]

try {

 A a = f();

 B b = g(a);

 realAction(a,b);

} catch (FirstExceptionType ex) {

 showDialog(title, messageForFirstExceptionType(ex));

} catch (SecondExceptionType ex) {

 showDialog(title, messageForSecondExceptionType(ex));

} catch (Exception ex) {

 showDialog(title, messageForOtherExceptions(ex));

}

Catch around each call?

A more detailed strategy would be to try-catch around each call.

In case we need a result from the call, this means either increasingly indented code (try-in-

try).

or (declare and fill later)

try {

 A a = f();

 try {

 B b = g(a);

 try {

 realAction(ab);

 } catch (...){

 showDialog();

 }

 } catch (G ex) {

 showDialog(title, ex); // title describes which GUI action we are in

 }

} catch (F ex) {

 // could an F be thrown in g?

 showDialog(title, ex);

}

A a = null;

try {

 a = f();

} catch (F ex) {

 showDialog(title, ex);

 return;

}

B b = null;

try {

 b = g(a);

} catch (G ex) {

 showDialog(title, ex);

 return;

}

try {

 realAction(ab);

} catch (...){

 showDialog();

}

In either case, the code becomes littered with exception handling code.

We might push the try-catch into its own function.

If the wrapper is called multiple times, this may reduce duplication of the catch-and-assign-

message part.

We can show an error dialog here: title carries some information from the caller, the exeption

caught brings some from below.

We still need to notify the action handler (the caller) about failure. Since we have shown the

dialog, we do not need to provide a message.

With Optional we get something like this:

and use it like this:

Catch in wrappers?

Notify caller with Optional result

[DIALOG IN WRAP, RETURN OPTIONAL]

Optional<A> wrap_f(String title) {

 try {

 return Optional.of(f());

 } catch (F ex) {

 showDialog(title, ex);

 return Optional.empty();

 }

}

Optional wrap_g(String title, A a) {

 try {

 return Optional.of(g(a));

 } catch (G ex) {

 showDialog(title, ex);

 return Optional.empty();

 }

}

Optional<A> a = wrap_f(title);

if (a.isEmpty()) { return; }

Optional b = wrap_g(title, a.get());

if (b.isEmpty()) { return; }

This looks fairly regular.

If g did not need a , we could simplify to

With Result we get something like this:

and use it like this:

try {

 realAction(a.get(), b.get());

} catch (...) {

}

Optional<A> a = wrap_f(title);

Optional b = wrap_g(title);

if (a.isEmpty() || b.isEmpty()) { return; }

try {

 realAction(a.get(), b.get());

} catch (...) {

}

Notify caller with Result result

[DIALOG IN WRAP, RETURN OORESULT]

OOResult<A, OOError> wrap_f() {

 try {

 return OOResult.ok(f());

 } catch (F ex) {

 return OOResult.error(OOError.from(ex));

 } catch (F2 ex) {

 String message = "...";

 return OOResult.error(new OOError(message, ex)); // [1]

 }

}

// [1] : this OOError constructor (explicit message but no title) is missing

Optional<B, OOError> wrap_g(A a) {

 try {

 return OOResult.ok(g(a));

 } catch (G ex) {

 return OOResult.error(OOError.from(ex));

 }

}

If g did not need a , we could simplify to

Or we can throw an exception to notify the caller.

To simplify code in the caller, I assume we are using an exception type not used elsewhere,

but shared by all precondition checks.

OOResult<A, OOError> a = wrap_f();

if (testDialog(title, a)) { // [1]

 return;

}

// [1] needs boolean testDialog(String title, OOResultLike<OOError>... a);

// where OOResultLike<T> is an interface with `OOVoidResult<T> asVoidResult()`

// and is implemented by OOResult and OOVoidResult

OOResult<B, OOError> b = wrap_g(a.get());

if (testDialog(title, b)) { return; } // (checkstyle makes this 3 lines)

try {

 realAction(a.get(), b.get());

} catch (...) {

}

Optional<A> a = wrap_f();

Optional b = wrap_g();

if (testDialog(title, a, b)) { // a single dialog can show both messages

 return;

}

try {

 realAction(a.get(), b.get());

} catch (...) {

}

Notify caller by throwing an exception

[DIALOG IN WRAP, PRECONDITIONEXCEPTION]

A wrap_f(String title) throws PreconditionException {

 try {

 return f();

 } catch (F ex) {

 showDialog(title, ex)

use

or (since PreconditionException is not thrown from realAction)

or (separate try-catch for preconditions and realAction)

 throw new PreconditionException();

 }

}

B wrap_g(String title, A a) throws PreconditionException {

 try {

 return g(a);

 } catch (G ex) {

 showDialog(title, ex);

 throw new PreconditionException();

 }

}

try {

 A a = wrap_f(title);

 B b = wrap_g(title, a);

 try {

 realAction(a, b);

 } catch (...) {

 showDialog(...)

 }

} catch(PreconditionException) {

 // Only precondition checks get us here.

 return;

}

try {

 A a = wrap_f(title);

 B b = wrap_g(title, a);

 realAction(a, b);

} catch (...) {

 // Only realAction gets us here

 showDialog(...)

} catch(PreconditionException) {

 // Only precondition checks get us here.

 return;

}

or to reduce passing around the title part:

use

A a = null;

B b = null;

try {

 a = wrap_f(title);

 b = wrap_g(title, a);

} catch(PreconditionException) {

 return;

}

try {

 realAction(a, b);

} catch (...) {

}

[PRECONDITIONEXCEPTION, DIALOG IN CATCH]

A wrap_f() throws PreconditionException {

 try {

 return f();

 } catch (F ex) {

 throw new PreconditionException(message, ex);

 }

}

B wrap_g(A a) throws PreconditionException {

 try {

 return g(a);

 } catch (G ex) {

 throw new PreconditionException(message, ex);

 }

}

try {

 A a = wrap_f();

 B b = wrap_g(a);

 try {

 realAction(a, b);

 } catch (...) {

 showDialog(...);

 }

or

As the developers guide suggest, we could “Catch and wrap all API exceptions” and rethrow

them as a JabRefException or some exception derived from it. In this case the try-catch part

goes even further down, and in principle we could just

Constraints:

conversion to JabRefException cannot be done in model (since JabRefException is in logic)

JabRefException expects a localized message. Or we need to remember which JabRefException

instances are localized and which need to be caught for localizing the message.

At the bottom we usually have very little information on higher level contexts: at a failure

like NoSuchProperty we cannot tell which set of properties did we look in and why.

For messages originating too deeply, we might want to override or extend the message

anyway.

} catch(PreconditionException ex) {

 showDialog(title, ex.message);

 return;

}

try {

 A a = wrap_f();

 B b = wrap_g(a);

 realAction(a, b);

} catch (...) {

 showDialog(...);

} catch(PreconditionException ex) {

 showDialog(title, ex.message);

 return;

}

Push associating the message further down

try {

 A a = f();

 B b = g(a);

 realAction(a, b);

} catch(JabRefException ex) {

 showDialog(title, ex.message);

 return;

}

•

•

•

for each exeption we might want to handle programmatically, we need a variant based on

JabRefException

So we might end up:

which looks very similar to the original version.

This again loses the information: can GDerivedFromJabRefException come from realAction or f or

not? This is because we have pushed down the last catch/throw indefinitely (eliminating

wrap_f) into a depth, where we cannot necessarily assign an appropriate message.

To a lesser extent this also happens in wrap_f : it only knows about the action that called it

what we provide (title or nothing). It knows the precondition it checks: probably an optimal

location to assign a message.

Summary: going from top to bottom, we move to increasingly more local context, our

knowledge shifts towards the “in which part of the code did we have a problem” and away

from the high level (“which action”).

One natural point to meet information from these to levels is the top level of action handlers.

For precondition checking code a wrapper around code elsewhere may be considered. Using

such wrappers may reduce duplication if called in multiple actions.

We still have to signal failure to the action handler: the options considered above were using

an Optional and throwing an exception with the appropriate message.

The more promising variants were

[dialog in wrap, return Optional]

Optional<A> wrap_f(String title) (showDialog inside)

•

try {

 A a = f();

 B b = g(a);

 realAction(a, b);

} catch(FDerivedFromJabRefException ex) {

 showDialog(title, messageForF);

} catch(GDerivedFromJabRefException ex) {

 showDialog(title, messageForG);

} catch(JabRefException ex) {

 showDialog(title, ex.message);

} catch(Exception ex) { // [1]

 showDialog(title, ex.message, ex);

 // [1] does "never catch Exception or Throwable" apply at this point?

 // Probably should not: we are promising not to throw.

}

•

pro: explicit return in caller

con: explicit return in caller (boilerplate)

con: passing in the title is repeated

would be ‘pro’ if we wanted title to vary within an action

[PreconditionException, dialog in catch]

A wrap_f() throws PreconditionException

(with showDialog under catch(PreconditionException ex))

con: hidden control flow

pro: no repeated if(){return} boilerplate

pro: title used only once

•

•

•

•

•

•

•

•

[using OOResult]

final String title = "Could not insert citation";

OOResult<XTextDocument, OOError> odoc = getXTextDocument();

if (testDialog(title,

 odoc,

 styleIsRequired(style),

 selectedBibEntryIsRequired(entries, OOError::noEntriesSelectedForCitation))) {

 return;

}

XTextDocument doc = odoc.get();

OOResult<OOFrontend, OOError> ofr = getFrontend(doc);

if (testDialog(title, ofr)) {

 return;

}

OOFrontend fr = ofr.get();

OOResult<XTextCursor, OOError> cursor = getUserCursorForTextInsertion(doc);

if (testDialog(title, cursor)) {

 return;

}

...

[using PreconditionException, dialog in catch]

final String title = "Could not insert citation";

try {

I would suggest using the latter,

probably using OOError for PreconditionException

In this case OOError being in gui becomes an asset: we can be sure code in logic cannot

throw it.

We lose the capability to collect mmessages in a single dialog (we stop processing at the

first problem).

The division between precondition checking (only throws PreconditionException) and

realActionbecomes invisible in the action code.

 XTextDocument doc = getXTextDocument();

 styleIsRequired(style);

 selectedBibEntryIsRequired(entries, OOError::noEntriesSelectedForCitation);

 OOFrontend fr = getFrontend(doc);

 XTextCursor cursor = getUserCursorForTextInsertion(doc);

 ...

} catch (PreconditionException ex) {

 showDialog(title, ex);

} catch (...) {

}

•

•

•

•

Developer Documentation

Code Howtos / The LibreOffice Panel / About OOError, OOResult, and OOVoidResult

On the question of where should we catch exceptions in relation to GUI code it was suggested

(Jonatan Asketorp here, “most of them (all?) should be handled latest in the ViewModel.”) that

catching them early could help simplifying the higher levels.

Some types of exceptions are caught in different GUI actions, often resulting in basically the

same error dialog, possibly only differing in the indicated context (which GUI action).

Problems found during precondition checking (for example: do we have a connection to a

document) and error conditions (for example: lost connection to a document during an action)

can overlap.

Since most of the code originally in OOBibBase was moved to logic and almost all GUI actions go

through OOBibBase , it seemed a good location to collect precondition checking and exception

handling code.

Note: some of the precondition checking still needs to stay in OpenOfficePanel : for example to

provide a list of selected BibEntry instances, it needs to go through some steps from

frame.getCurrentLibraryTab() to (!entries.isEmpty() && checkThatEntriesHaveKeys(entries))

To avoid OOBibBase depending on the higher level OpenOfficePanel message texts needed in

OOBibBase were moved from OpenOfficePanel to OOError . (Others stayed, but could be moved if

that seems worthwile)

OOError is a collection of data used in error dialogs.

It is a JabRefException with an added field: localizedTitle

It can store: a dialog title, a localized message (optionally a non-localized message as

well) and a Throwable

About OOError, OOResult, and

OOVoidResult

Context

Relieve GUI panel code

Same messages in different contexts

OOBibBase as a precondition and exception handling layer

OOError

•

•

•

I used it in OOBibBase as a unified format for errors to be shown in an error dialog.

Static constructors in OOError provide uniform translation from some exception types to

OOError with the corresponding localized messages:

public static OOError from(SomeException ex)

There is also public static OOError fromMisc(Exception ex) for exception types not handled

individually. (It has a different name, to avoid ambiguity)

Another set of constructors provide messages for some preconditions.

For example public static OOError noDataBaseIsOpenForCiting()

Some questions:

Should we use static data instead of static methods for the precondition-related messages?

pro: why create a new instance for each error?

con: OOError.setTitle() currently just sets this.localizedTitle and returns this . For static

instances this would modify a shared resource unless we create a new copy in setTitle .

However setTitle can be called repeatedly on the same object: as we bubble up, we can

be more specific about the context.

Should we remove title from OOError ?

pro: we almost always override its original value

con: may need to duplicate the title in different files (preconditions for an action in

OpenOfficePanel and in OOBibBase)

Should we include OOError.showErrorDialog ?

pro: since it was intended for error dialogs, it is nice to provide this.

con: the reference to DialogService forces it to gui , thus it cannot be used in logic or

model

Should we use JabRefException as base?

pro: JabRefException is mentioned as the standard form of errors in the developers guide.

All Exceptions we throw should be or extend JabRefException

against: JabRefException is in logic cannot be used in model.

(Could this be resolved by moving JabRefException to model ?)

During precondition checking

While concentrating on these and on “do not throw exceptions here” … using a Result type as

a return value from precondition checking code seemed a good fit:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

OOResult

some tests return no data, only report problems1

we may need to get some resources that might not be available (for example: connection

to a document, a functional textview cursor)

2

some test depend on these resources3

Instead of throwing an exception, we can return some data describing the problem.

Conceptually it is a data structure that either holds the result (of a computation) or and

error value.

It can be considered as an extended Optional , that can provide details on “why empty”?

It can be considered as an alternative to throwing an exception: we return an error instead.

Methods throwing checked exceptions cannot be used with for example List.map .

Methods returning a Result could.

Result shares the problem (with any other solutions) that in a function several types of

errors may occur, but we can only return a single error type. Java solves this using checked

exceptions being all descendants of Exception. (Also adds try/catch/catch to select cases

based on the exceptions type, and some checking against forgotten cases of checked

exception types)

In OOBibBase I used OOError as the unified error type: it can store error messages and wrap

exceptions. It contains everything we need for an error dialog. On the other hand it does not

support programmatic dissection.

Unlike Optional and List , Result (in the sense used here) did not get into java standard

libraries. There are some implementations of this idea for java on the net:

bgerstle/result-java

MrKloan/result-type

david-bakin

vavr-try

Generics allow an implementation built around

with an assumption that at any time exactly one of result and error is present.

class X<R,E> { boolean isOK; Object data; } expresses this assumption more directly, (but omits

the relation between the type parameters <R,E> and the type in data)

Since OOResult encodes the state isOK in result.isPresent() (and equivalently in

errror.isEmpty()), we cannot allow construction of instances where both values are isEmpty .

In particular, OOResult.ok(null) and OOResult.error(null) are not allowed: it would make the

state isOK ambiguous.

It would also break the similarity to Optional to allow both isEmpty and isOK to be true.

•

•

•

•

•

•

Implementation

•

•

•

•

class OOResult<R, E> {

 private final Optional<R> result;

 private final Optional<E> error;

}

•

Not allowing null, has a consequence on OOResult<Void,E>

According to baeldung.com/java-void-type, the only possible value for Void is null which we

excluded.

OOResult<Void,E>.ok(null) would look strange: in this case we need ok() without arguments.

To solve this problem, I introduced

with methods on the error side similar to those in OOError<R,E> , and OOVoidResult.ok() to

construct the success case with no data.

Both Optional and OOVoidResult can store 0 or 1 values, in this respect they are equivalent

Actually, OOVoidResult is just a wrapper around an Optional

In terms of communication to human readers when used, their connotation in respect to

success and failure is the opposite:

Optional.empty() normally suggests failure, OOVoidResult.ok() mean success.

Optional.of(something) probably means success, OOVoidResult.error(something) indicates

failure.

OOVoidResult is “the other half” (the failure branch) of OOResult

its content is accessed through getError , mapError , ifError , not get , map , ifPresent

OOVoidResult allows

a clear distinction between success and failure when calls to “get” something that might

not be available (Optional) and calls to precondition checking where we can only get

reasons for failure (OOVoidResult) appear together.

Using Optional for both is possible, but is more error-prone.

it also allows using uniform verbs (isError , getError , ifError , return OO{Void}Result.error) for

“we have a problem” when

checking preconditions (OOVoidResult) is mixed with

“I need an X” orelse “we have a problem” (OOResult)

at a functions head:

OOVoidResult<String> function() says: no result, but may get an error message

Optional<String> function() says: a String result or nothing.

•

class OOVoidResult<E> {

 private final Optional<E> error;

 ...

}

The relation between Optional<E> and OOVoidResult<E>

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Summary: technically could use Optional for both situation, but it would be less precise,

leaving more room for confusion and bugs. OOVoidResult forces use of getError instead of get ,

and isError or isOk instead of isPresentor isEmpty .

The promise of Result is that we can avoid throwing exceptions and return errors instead. This

allows the caller to handle these latter as data, for example may summarize / collect them for

example into a single message dialog.

Handling the result needs some code in the caller. If we only needed checks that return only

errors (not results), the code could look like this (with possibly more tests listed):

with a reasonably small footstep.

Dependencies of tests on earlier results complicates this: now we repeat the

part several times.

What does OOResult buy us?

OOResult<XTextDocument, OOError> odoc = getXTextDocument();

if (testDialog(title,

 odoc,

 styleIsRequired(style),

 selectedBibEntryIsRequired(entries, OOError::noEntriesSelectedForCitation))) {

 return;

}

if (testDialog(title,

 ...)) {

 return;

}

Developer Documentation

Code Howtos / The LibreOffice Panel / Order of appearance of citation groups

The order of appearance of citations is decided on two levels:

This page is about the latter: how to decide the order of appearance (numbering sequence) of

a set of citation markers?

In a continuous text it is easy: take the textual order of citation markers.

In the presence of figures, tables, footnotes/endnotes possibly far from the location they are

referred to in the text or wrapped around with text it becomes less obvious what is the correct

order.

Examples:

References in footnotes: are they after the page content, or number them as if they

appeared at the footnote mark? (JabRef does the latter)

A figure with references in its caption. Text may flow on either or both sides.

Where should we insert these in the sequence?

In a two-column layout, a text frame or figure mostly, but not fully in the second column:

shall we consider it part of the second column?

In LibreOffice, a document has a main text that supports the XText interface.

This allows several types of XTextContent to be inserted.

Some of these allow text inside with further insertions.

Many, but not all XTextContent types support getting a “technical” insertion point or text

range through getAnchor.

In Libreoffice positioning both a frame and its anchor seems hard: moving the frame tends

to also move the anchor.

Consequence: producing an order of appearance for the citation groups based solely on

getAnchor calls may be impossible.

Order of appearance of citation groups

their order within each citation group (localOrder), and1

the order of the citation groups that appear as citation markers in the text (globalOrder).2

Conceptually

•

•

•

Technically

•

Anchors

•

•

•

Allowing or requiring the user to insert “logical anchors” for frames and other “floating”

parts might help to alleviate these problems.

The text ranges occupied by the citation markers support the XTextRange interface.

These provide access to the XText they are contained in.

The Text service may support (optional) the XTextRangeCompare interface, that allows two

XTextRange values to be compared if both belong to this Text

The cursor used by the user is available as an XTextViewCursor

If we can get it and can set its position in the document to each XTextRange to be sorted,

and ask its getPosition to provide coordinates “relative to the top left position of the first

page of the document.”, then we can sort by these coordinates in top-to-bottom left-to-

right order.

Note: in some cases, for example when the cursor is in a comment (as in Libreoffice:

[menu:Insert]/[Comment]), the XTextViewCursor is not available (I know of no way to get it).

In some other cases, for example when an image is selected, the XTextViewCursor we

normally receive is not ‘functional’: we cannot position it for getting coordinates for the

citation marks. The FunctionalTextViewCursor class can solve this case by accessing and

manipulating the cursor through XSelectionSupplier

Consequences of getting these visual coordinates and using them to order the citation

markers

allows uniform handling of the markers. Works in footnotes, tables, frames (apparently

anywhere)

requires moving the user visible cursor to each position and with screen refresh enabled.

(problem) This results in some user-visible flashing and scrolling around in the document

view.

The expression “relative to the top left position of the first page of the document” is

understood literally, “as on the screen”.

(problem) Showing pages side by side or using a two-column layout will result in markers in

the top half of the second column or page to be sorted before those on the bottom of the

first column of the first page.

Jabref uses the following steps for sorting citation markers (providing globalOrder):

•

Sorting within a Text

•

•

Visual ordering

•

•

•

•

•

•

•

JabRef

the textranges of citation marks in footnotes are replaced by the textranges of the footnote

marks.

1

get the positions (coordinates) of these marks2

(problem) In JabRef5.2 the positions of citation marks within the same footnote become

indistinguishable, thus their order after sorting may differ from their order in the footnote text.

This caused problems for

sort in top-to-bottom left-to-right order3

numbering order

(solved) by keeping track of the order-in-footnote of citation markers during sorting using

getIndexInPosition)

1

click:Merge : It examines consecutive pairs of citation groups if they can be merged. Wrong

order may result in not discovering some mergeable pairs or attempting to merge in wrong

order.

(solved) by not using visual order, only XTextRangeCompare-based order within each XText

here)

2

Developer Documentation

Code Howtos / The LibreOffice Panel / Overview

This is a partial overview of the OpenOffice/LibreOffice panel and the code behind.

To access the panel: JabRef:/[menu:View]/[OpenOffice/LibreOffice]

The user documentation is at https://docs.jabref.org/cite/openofficeintegration

I am going to refer to OpenOffice Writer and LibreOffice Writer as LibreOffice or LO: their UNO

APIs are still mostly identical, but I only tested with LibreOffice and differences do exist.

What is stored in a document, how.

Generating citation markers and bibliography

(excluding the bibliography entries, which is delegated to the layout module)

Allow the user to insert citations in a LibreOffice writer document.

Automatically format these according to some prescribed style as citation markers.

Generate a bibliography, also formatted according to the style.

The bibliography consists of a title (e.g. “References”) and a sorted list of formatted

bibliography entries, possibly prefixed with a marker (e.g. “[1]”)

It also allows some related activities: connect to a document, select a style, group

(“Merge”) the citations for nicer output, ungroup (“Separate”) them to move or delete them

individually, edit (“Manage”) their page-info parts, and collect the database entries of cited

sources to a new database.

Citations (actually citation groups, see below) have three types depending on how the citation

marker is intended to appear in the text:

Parenthesized: “(Smith, 2000)”

In-text: “Smith (2000)”

Invisible: no visible citation mark.

An invisible citation mark lets the user to use any form for the citation by taking control

(and responsibility) back from the style.

Overview

•

•

Subject

•

•

•

The purpose of the panel

•

•

•

•

•

Citation types

•

•

•

•

Like the other two citation types, they have a location in the document.

In the bibliography these behave as the other two citation types.

In LibreOffice (LibreOffice:[Ctrl-F8] or LibreOffice:[menu:View]/[Field Shadings]) shows

reference marks with gray background. Invisible citation marks appear as a thin gray

rectangle.

These citation types correspond to \citep{Smith2000} , \citet{Smith2000} in natbib and

\nocite{Smith2000} . I will use \citep , \citet and \citen in “LaTeX pseudocode” below.

The citations can be augmented with a string detailing which part of a document is cited, for

example “page 11” or “chapter 2”.

Sample citation markers (with LaTeX pseudocode):

\citep[page 11]{Smith2000} “(Smith, 2000; page 11)”

\citet[page 11]{Smith2000} “Smith (2000; page 11)”

\citen[page 11]{Smith2000} “”

This string is referred to as pageInfo in the code.

In the GUI the labels “Cite special”, “Extra information (e.g. page number)” are used.

Citations can be grouped.

A group of parenthesized citations share the parentheses around, like this:

“(Smith, 2000; Jones 2001)”.

Examples with pseudocode:

\citep{Smith2000,Jones2001} “(Smith, 2000; Jones 2001)”

\citet{Smith2000,Jones2001} “Smith (2000); Jones (2001)”

\citen{Smith2000,Jones2001} “”

From the user’s point of view, citation groups can be created by

•

•

•

•

PageInfo

•

•

•

•

•

Citation groups

•

•

•

•

Selecting multiple entries in a bibliography database, then

[click:Cite] or

[click:Cite in-text] or

[click:Cite special] or

[click:Insert empty citation] in the panel.

This method allows any of the citation types to be used.

1

•

•

•

•

In order to manage single citations and groups uniformly, we consider each citation in the

document to belong to a citation group, even if it means a group containing a single citation.

Citation groups correspond to citation markers in the document. The latter is empty for

invisible citation groups. When creating the citation markers, the citations in the group are

processed together.

The details of how to format the bibliography and the citation markers are described in a text

file.

These normally use .jstyle extension, and I will refer to them as jstyle files.

See the User documentation for details.

I will refer to keywords in jstyle files as jstyle:keyword below.

Four major types citation of styles can be described by a jstyle.

[click:Merge citations] finds all sets of consecutive citations in the text and replaces each

with a group.

(change) The new code only merges consecutive parenthesized citations.

This is inconsistent with the solution used in [click:Cite]

My impression is that

groups of in-text or invisible citations are probably not useful

mixed groups are even less. However, with a numbered style there is no visual

difference between parenthesized and in-text citations, the user may be left

wondering why did merge not work.

One way out could be to merge as a “parenthesized” group. But then users

switching between styles get a surprise, we have unexpectedly overridden their

choice.

I would prefer a visible log-like warning that does not require a click to close

and lets me see multiple warnings. Could the main window have such an area

at the bottom?

Starting with JabRef 5.3 there is also [click:Separate citations] that breaks all groups to

single citations.

This allows

deleting individual citations

moving individual citations around (between citation groups)

(copy does not work)

(Moving a citation within a group has no effect on the final output due to sorting of

citations within groups. See Sorting within a citation group)

2

•

•

•

•

•

•

•

•

•

•

•

•

•

Citation styles

•

•

•

(1) jstyle:BibTeXKeyCitations

The citation markers show the citationKey.

It is not fully implemented

does not produce markers before the bibliography entries

does not show pageInfo

It is not advertised in the User documentation.

Its intended purpose may be

(likely) a proper style, with “[Smith2000]” style citation markers

(possibly) a style for “draft mode” that

can avoid lookup of citation markers in the database when only the citation

markers are updated

can produce unique citation markers trivially (only needs local information)

makes the citation keys visible to the user

can work without knowing the order of appearance of citation groups

In case we expect to handle larger documents, a “draft mode” minimizing work

during [click:Cite] may be useful.

There are two types of numbered (jstyle:IsNumberEntries) citation styles:

(2) Citations numbered in order of first appearance (jstyle:IsSortByPosition)

(3) Citations numbered according to their order in the sorted bibliography

(4) Author-year styles

The bibliography is sorted in (author, year, title) order

except for jstyle:IsSortByPosition , that uses the order of first appearance of the cited

sources.

The order of appearance of citations (as considered during numbering and adding letters after

the year to ensure that citation markers uniquely identify sources in the bibliography) is

decided on two levels.

The order of citations within a citation group is controlled by jstyle:MultiCiteChronological .

true asks for (year, author, title) ordering,

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Sorting

Sorting the bibliography

•

Ordering the citations

Their order within each citation group (localOrder), and1

the order of the citation groups (citation markers) in the text (globalOrder).2

SORTING WITHIN A CITATION GROUP (localOrder)

•

false for (author, year, title).

(There is no option for “in the order provided by the user”).

For author-year citation styles this ordering is used directly.

The (author, year, title) order promotes discovering citations sharing authors and year and

emitting them in a shorter form. For example as “(Smith 2000a,b)”.

For numbered styles, the citations within a group are sorted again during generation of the

citation marker, now by the numbers themselves. The result of this sorting is not saved, only

affects the citation marker.

Series of consecutive number are replaced with ranges: for example “[1-5; 11]”

The location of each citation group in the document is provided by the user. In a text with no

insets, footnotes, figures etc. this directly provides the order. In the presence of these, it

becomes more complicated, see Order of appearance of citation groups.

globalOrder and localOrder together provide the order of appearance of citations

This also provides the order of first appearance of the cited sources.

First appearance order of sources is used

in jstyle:IsSortByPosition numbered styles

in author-year styles: first appearance of “Smith200a” should precede that of

“Smith200b”.

To achieve this, the sources get the letters according the order of their first appearance.

This seems to contradict the statement “The bibliography is sorted in (author, year,

title) order” above.

It does not. As of JabRef 5.3 both are true.

Consequence: in the references Smith2000b may precede Smith2000a. (reported)

Some author-year citation styles prescribe a higher threshold on the number of authors

for switching to “FirstAuthor et al.” form (jstyle:MaxAuthors) at the first citation of a source

(jstyle:MaxAuthorsFirst)

Each group of citations has a reference mark.

(Reference marks are shown in LibreOffice in Navigator, under “References”.

To show the Navigator: LibreOffice:[menu:View]/[Navigator] or LibreOffice:[key:F5])

Its purposes:

•

•

•

•

ORDER OF THE CITATION GROUPS (globalOrder)

ORDER OF THE CITATIONS

•

•

•

•

•

•

What is stored in a document (JabRef5.2)

•

Each group of citations may have an associated pageInfo.

In LibreOffice, these can be found at

LibreOffice:/[menu:File]/[Properties]/[Custom Properties]

The property names are identical to the name of the reference mark corresponding to

the citation group.

JabRef 5.2 never cleans up these, they are left around.

(problem) New citations may “pick up” these unexpectedly.

The bibliography, if not found, is created at the end of the document.

The location and extent of the bibliography is the content of the Section named "JR_bib" .

(In LibreOffice Sections are listed in the Navigator panel, under “Sections”)

JabRef 5.2 also creates a bookmark named "JR_bib_end" , but does not use it. During

bibliography update it attempts to create it again without removing the old bookmark.

The result is a new bookmark, with a number appended to its name (by LibreOffice, to

ensure unique names of bookmarks).

Correction in new code: remove the old before creating the new.

“stateless”

JabRef is only loosely coupled to the document.

Between two GUI actions it does not receive any information from LibreOffice.

It cannot distinguish between the user changing a single character in the document or

rewriting everything.

Access data

The text range of the reference mark tells where to write or update the citation mark.1

The name of the reference mark

Lets us select only those reference marks that belong to us

Encodes the citation type

Contains the list of citation keys that belong to this group

It may contain an extra number, to make the name unique in the document

Format: "JR_cite{number}_{type}_{citationKeys}" , where

{number} is either empty or an unsigned integer (it can be zero) to make the name

unique

{type} is 1, 2, or 3 for parenthesized, in-text and invisible

{citationKeys} contains the comma-separated list of citation keys

Examples:

JR_cite_1_Smith2000 (empty number part, parenthesized, single citation)

JR_cite0_2_Smith2000,Jones2001 (number part is 0, in-text, two citations)

JR_cite1_3_Smith2000,Jones2001 (number part is 1, invisible, two citations)

2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

How does it interact with the document?

•

•

During a [click:cite] or [click:Update] we need the reference mark names.

Get all reference mark names

Filter (only ours)

Parse: gives citation type (for the group), citation keys

Access/store pageInfo: based on reference mark name and property name being equal

Creating a citation group: ([click:cite])

Creates a reference mark at the cursor, with a name as described above.

Update (refreshing citation markers and bibliography):

citation markers: the content of the reference mark

bibliography: the content of the Section (in LibreOffice sense) named "JR_bib" .

•

•

•

•

•

•

•

•

•

•

Developer Documentation

Code Howtos / The LibreOffice Panel / Problems

Creating [click:Separate] revealed

a (problem) : pageInfo strings are conceptually associated with citations, but the

implementation associates them to citation groups.

The number of available pageInfo slots changes during [click:Merge] and [click:Separate]

while the number of citations remains fixed.

The proposed solution was to change the association.

Not only reference marks (citation groups) need unique identifiers, but also citations.

Possible encoding for reference mark names:

JR_cite{type}_{number1}_{citationKey1},{number2}_{citationKey2}

where {type} encodes the citation type (for the group), {citationKey1} is made unique

by choosing an appropriate number for {number1}

This would allow JR_cite_{number1}_{citationKey1} to be used as a property name for

storing the pageInfo.

Changes required to

reference mark search, name generation and parsing

name generation and parsing for properties storing pageInfo values

in-memory representation

JabRef 5.2 does not collect pageInfo values, accesses only when needed.

So it would be change to code accessing them.

The proposed representation does collect, to allow separation of getting from

the document and processing

insertion of pageInfo into citation markers: JabRef 5.2 injects a single pageInfo

before the closing parenthesis, now we need to handle several values

[click:Manage citations] should work on citations, not citation groups.

The choice of how do we represent the data and the citation marks in the document has

consequences on usability.

Reference marks have some features that make it easy to mess up citations in a document

Problems

pageInfo should belong to citations, not citation groups

•

•

•

•

•

•

•

•

•

•

Backend

They are not visible by default, the user is not aware of their boundaries

(LO:[key:Ctrl-F8] , LO:[View]/[Field shadings] helps)

They are not atomic:

the user can edit the content. This will be lost on [click:Update]

If an As character or To character anchor is inserted, the corresponding frame or footnote

is deleted.

by pressing Enter within, the user can break a reference mark into two parts.

The second part is now outside the reference mark: [click:Update] will leave it as is, and

replace the first part with the full text for the citation mark.

If the space separating to citation marks is deleted, the user cannot reliably type

between the marks.

The text typed usually becomes part of one of the marks. No visual clue as to which one.

Note: [click:Merge] then [click:Separate] adds a single space between. The user can

position the cursor before or after it. In either case the cursor is on a boundary: it is not

clear if it is in or out of a reference mark.

Special case: a reference mark at the start or end of a paragraph: the cursor is usually

considered to be within at the corresponding edge.

(good) They can be moved (Ctrl-X,Ctrl-V)

They cannot be copied. (Ctrl-C, Ctrl-V) copies the text without the reference mark.

Reference marks are lost if the document is saved as docx.

I know of no way to insert text into an empty text range denoted by a reference mark

JabRef 5.3 recreates the reference mark (using insertReferenceMark) here

(change) I preferred to (try to) avoid this: NamedRangeReferenceMark.nrGetFillCursor

returns a cursor between two invisible spaces, to provide the caller a location it can

safely write some text. NamedRangeReferenceMark.nrCleanFillCursor removes these

invisible spaces unless the content would become empty or a single character. By

keeping the content at least two characters, we avoid the ambiguity at the edges: a

cursor positioned between two characters inside is always within the reference mark. (At

the edges it may or may not be inside.)

(change) [click:Cite] at reference mark edges: safeInsertSpacesBetweenReferenceMarks

ensures the we are not inside, by starting two new paragraphs, inserting two spaces

between them, then removing the new paragraph marks.

(change) guiActionInsertEntry checks if the cursor is in a citation mark or the bibliography.

(change) [click:Update] does an exhaustive check for overlaps between protected ranges

(citation marks and bibliography). This can become slow if there are many citations.

It would be nice if we could have a backend with better properties. We probably need multiple

backends for different purposes. This would be made easier if the backend were separated

from the rest of the code. This would be the purpose of logic/openoffice/backend.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Undo

JabRef 5.3 does not collect the effects of GUI actions on the document into larger Undo

actions.

This makes the Undo functionality of LO impractical.

(change) collect the effects of GUI actions into large chunks: now a GUI action can be

undone with a single click.

except the effect on pageInfo: that is stored at the document level and is not restored

by Undo.

LibreOffice has support in XModel to “suspend some notifications to the controllers which

are used for display updates.”

(change) Now we are using this facility.

•

•

•

Block screen refresh

•

•

Developer Documentation

Code Howtos / The LibreOffice Panel

Overview

Order of appearance of citation groups

Problems

Code reorganization

About OOError, OOResult, and OOVoidResult

Alternatives to using OOResult and OOVoidResult in OOBibBase

The LibreOffice Panel

TABLE OF CONTENTS

•

•

•

•

•

•

Developer Documentation

Code Howtos / Remote Storage / Remote JabDrive storage

This describes the synchronization to JabDrive. JabRef Online also implements the JabDrive

interface.

The setting is that clients synchronize their local view with a server. The server itself does not

change data on itself. If it does, it needs to create a separate client connecting to the server.

Thus, all changes are finally triggered by a client.

The following algorithm is highly inspired by the replication protocols of CouchDB and RxDB.

For the explanation, we focus on the synchronization of entries. Nevertheless, the

synchronization of other data (such as the groups tree) works similarly.

From a high-level perspective, the sync algorithm is very similar with git: both the server and

the client have their own change histories, and the client has to first pull and merge changes

from the server before pushing its new state to the server. The sync process is incremental

and only examines entries updated since the last sync.

We call this the “pull-merge-push cycle”.

We start by providing information on data structures. There are some explanations of data

structures included if they are short. Longer explanations are put below at “The ‘pull-merge-

push cycle’”.

In order to support synchronization, additional metadata is kept for each item:

ID : An unique identifier for the entry (will be a UUID).

Revision : The revision is a “generation Id” being increasing positive integer. This is based on

Multiversion concurrency control (MVCC), where an increasing identifier (“time stamp”) is

used.

hash : This is the hash of the item (i.e., of all the data except for Revision and hash).

(Client only) dirty : Marks whether the user changed the entry.

ID and Revision are handled in org.jabref.model.entry.SharedBibEntryData .

DIRTY FLAGS

Using dirty flags, the client keeps track of the changes that happened in the library since

the last time the client was synchronized with the server. When the client loads a library

Remote JabDrive storage

Data structures

Metadata for each item

•

•

•

•

into memory, it computes the hash for each entry and compares it with the hash in the

entry’s metadata. In case of a difference between these hashes, the entry is marked dirty.

Moreover, an entry’s dirty flag is set whenever it is modified by the user in JabRef. The

dirty flag is only cleared after a successful synchronization process.

There is no need to serialize the dirty flags on the client’s side since they are recomputed

upon loading.

The idea is that the server tracks a global (logical) monotone increasing “time clock” tracking

the existing revisions. Each entry has its own revision, increased “locally”. The “global revision

id” keeps track of the global synchronization state. One can view it as aggregation on the

synchronization state of all entries. Similar to the revision concept of Subversion.

Deleted items are persisted as tombstones, which contain the metadata ID and Revision only.

Tombstones ensure that all synchronizing devices can identify that a previously existing entry

has been deleted. On the client, a tombstone is created whenever an entry is deleted.

Moreover, the client keeps a list of all entries in the library so that external deletions can be

recognized when loading the library into memory. The local list of tombstones is cleared after

it is sent to the server and the server acknowledged it. On the server, tombstones are kept for

a certain time span (world time) that is strictly larger than the time devices are allowed to not

sign-in before removed as registered devices.

Checkpoints allow a sync task to be resumed from where it stopped, without having to start

from the beginning.

The checkpoint locally stored by the client signals the logical time (generation Id) of the last

server change that has been integrated into the local library. Checkpoints are used to paginate

the server-side changes. In the implementation, the checkpoint is a tuple consisting of the

server time of the latest change and the highest ID of the entry in the batch. However, it is

better to not depend on these semantics.

The client has to store a checkpoint LastSync in its local database, and it is updated after every

merge. The checkpoint is then used as the Since parameter in the next Pull phase.

Each sync cycle is divided into three phases:

Global time clock

Tombstones

Checkpoints

The “pull-merge-push cycle”

Pull phase : The server sends its local changes to the client.1

Merge phase : The client and server merge their local changes.2

Push phase : The client sends its local changes to the server.3

We assume that the server has some view on the library and the client has a view on the

library.

STRAIGHT-FORWARD SYNCHRONIZATION

When the client connects to the server, one option for synchronization is to ask the server

for all up-to-date entries and then using the Revision information to merge with the local

data. However, this is highly inefficient as the whole database has to be sent over the

wire. A small improvement is gained by first asking only for tuples of ID and Revision , and

only pull the complete entry if the local data is outdated or in conflict. However, this still

requires to send quite a bit of data. Instead, we will use the following refinement.

The client pulls on first connect or when requested to pull. The client asks the server for a list

of documents that changed since the last checkpoint. (Creating a checkpoint is explained

further below.) The server responses with a batched list of these entries together with their

Revision information. These entries could also be tombstones. Each batch includes also a

checkpoint To that has the meaning “all changes to this point in time are included in the

current batch”.

NOTE

Once the pull does not give any further changes, the client switches to an event-based

strategy and observes new changes by subscribing to the event bus provided by the

server. This is more an implementation detail than a conceptual difference.

The pulled data from the server needs to be merged with the local view of the data. The data

is merged on a per-entry basis. Based on the “generation ID” (Revision) of server and client,

following cases can occur:

Pull Phase

Merge Phase

The server’s Revision is higher than the client’s Revision : Two cases need to be

distinguished:

1

The client’s entry is dirty. That means, the user has edited the entry in the meantime.

Then the user is shown a message to resolve the conflict (see “Conflict Handling” below)

a

The client’s entry is clean. That means, the user has not edited the entry in the

meantime. In this case, the client’s entry is replaced by the server’s one (including the

revision).

b

The server’s Revision is equal to the client’s Revision : Both entries are up-to-date and

nothing has to be done. This case may happen if the library is synchronized by other

means.

2

The server’s Revision is lower than the client’s Revision : This should never be the case, as

revisions are only increased on the server. Show error message to user.

3

If the entry returned by the server is a tombstone, then:

If the client’s entry is also a tombstone, then we do not have to do anything.

If the client’s entry is dirty, then the user is shown a message to resolve the conflict (see

“Conflict Handling”) below.

Otherwise, the client’s entry is deleted. There is no need to keep track of this as a local

tombstone.

If the user chooses to overwrite the local entry with the server entry, then the entry’s Revision

is updated as well, and it is no longer marked as dirty. Otherwise, its Revision is updated to the

one provided by the server, but it is still marked as dirty. This will enable pushing of the entry

to the server during the “Push Phase”.

After the merging is done, the client sets its local checkpoint to the value of To .

The client sends the following information back to the server:

The list of entries that are marked dirty (along with their Revision data).

The list of entries that are new, i.e., that do not have an ID yet.

The list of tombstones, i.e., entries that have been deleted.

The server accepts only changes if the provided Revision coincides with the Revision stored on

the server. If this is not the case, then the entry has been modified on the server since the last

pull operation, and then the user needs to go through a new pull-merge-push cycle.

During the push operation, the user is not allowed to locally edit these entries that are

currently pushed. After the push operation, all entries accepted by the server are marked

clean. Moreover, the server will generate a new revision number for each accepted entry,

which will then be stored locally. Entries rejected (as conflicts) by the server stay dirty and

their Revision remains unchanged.

It is important to note that sync replicates the library only as it was at the point in time when

the sync was started. So, any additions, modifications, or deletions on the server-side after the

start of sync will not be replicated. For this reason, a new cycle is started.

Having discussed the general algorithm, we discuss scenarios which can happen during

usage. In the following, T denotes the “global generation Id”.

We focus on JabRef as client and a “user” using JabRef.

•

•

•

CONFLICT HANDLING

Push Phase

•

•

•

Start the “pull-merge-push cycle” again

Scenarios

Sync stops after Pull

This is the best we can do, since the user decided to not save its previous work.

However, consider the same steps but now in step 2, the user decided to save their work. The

locally stored checkpoint is still T = 0 . Thus, the user has to redo the conflict resolution again.

The difference is that the local version is the previously merge result now.

Future improvement: We could send checkpoints for every entry and after each conflict

resolution set the local checkpoint to the checkpoint of the entry.

This is the best we can do, since the user decided to not save their previous work.

If the user decides in step 3 to save their changes, then in step 5 JabRef would pull changes

starting from T = 1 and the user does not have to redo the conflict resolution.

JabRef pulls changes since T = 01

JabRef starts with the merge and the user (in parallel) closes JabRef discarding any

changes.

2

User opens JabRef again.3

JabRef pulls changes again from T = 0 (since the checkpoint is still T = 0) and JabRef has to

redo the conflict resolution.

4

Sync stops after Merge

JabRef pulls changes since T = 01

JabRef finishes the merge (this sets the checkpoint T = 1)̀.2

User closes JabRef with discarding any changes (in particular, the checkpoint is not

persisted as well).

3

User opens JabRef again.4

JabRef pulls changes again from T = 0 (since the checkpoint is still T = 0) and has to redo

the conflict resolution.

5

Sync after successful sync of client changes

JabRef modifies local data: {id: 1, value: 0, _rev=1, _dirty=false} to {id: 1, value: 1, _rev=1,

_dirty=true} . id is ID from above, value summarizes all fields of the entry, _rev is Revision

from above, and _dirty the dirty flag.

1

JabRef pulls server changes. Suppose there are none.2

Consequently, Merge is not necessary. JabRef sets checkpoint to T = 1 .3

JabRef pushes its changes to the server. Assume this corresponds to T = 2 on the server. On

the server, this updates {id: 1, value: 0, _rev=1, updatedAt=1} to {id: 1, value: 1, _rev=2,

updatedAt=2} and on the client {id: 1, value: 1, _rev=1, _dirty=true} to {id: 1, value: 1, _rev=2,

_dirty=false} .

4

Client pulls changes starting from T = 1 (the last local checkpoint). Server responds with

{id: 1, value: 1, _rev=2}, checkpoint={2} .

5

This is not quite optimal since the last pull response contains the full data of the entry

although this data is already at the client.

Possible future improvements:

First pull only the IDs and Revisions of the server-side changes, and then filter out the ones

we already have locally before querying the complete entry. Downside is that this solution

always needs one more request (per change batch) and it is not clear if this outweighs the

costs of sending the full entry.

The server can remember where a change came from and then not send these changes

back to that client. Especially if the server’s generation Id increased by one due to the

update, this is straight-forward.

The identifier needs to be unique at the very least across the library and should stay constant

in time. Both features cannot be ensured for BibTeX keys. Note this is similar to the shared_id

in the case of the SQL synchronization.

The revision functions as “generation Id” known from Lamport clocks and common in

synchronization. For instance, the Optimistic Offline Lock also uses these kinds of clocks.

A “generation Id” is essentially a clock local to the entry that ticks whenever the entry is

synced with the server. As for us there is only one server, strictly speaking, it would suffice to

use the global server time for this. Moreover, for the sync algorithm, the client would only

need to store the revision/server time during the pull-merge-push cycle (to make sure that

during this time the entry is not modified again on the server). Nevertheless, the generation Id

is only a tiny data blob, and it gives a bit of additional security/consistency during the merge

operation, so we keep it around all the time.

The hash is only used on the client to determine whether an entry has been changed outside

of JabRef.

The revision history is used by CouchDB to find a common ancestor of two given revisions.

This is needed since CouchDB provides main-main sync. However, in our setting, we have a

central server and thus the last synced revision is the common ancestor for both the new

server and client revision.

Client merges the ‘changes’, which in this case is trivial since the data on the server and

client is the same.

6

•

•

FAQs

Why do we need an identifier (ID)? Is the BibTeX key not enough?

Why do we need revisions? Are updatedAt timeflags not enough?

Why do we need an entry hash?

WHY DON’T WE NEED TO KEEP THE WHOLE REVISION HISTORY AS IT IS DONE IN COUCHDB?

In CouchDB, every client has their own history of revisions. This is needed to have a

deterministic conflict resolution that can run on both the server and client side independently.

In this setting, it is important to determine which revision is older, which is then declared to be

the winner. However, we do not need an automatic conflict resolution: Whenever there is a

conflict, the user is asked to resolve it. For this it is not important to know how many times

(and when) the user changed the entry locally. It suffices to know that it changed at some

point from the last synced version.

Local revision histories could be helpful in scenarios such as the following:

Without local revisions, it is not possible for Device A to figure out that the entry from the

server logically evolved from its own local version. Instead, it shows a conflict message since

the entry changed locally (step 1) and there is a newer revision on the server (from step 4).

CouchDB style sync and conflict resolution on Postgres with Hasura: Explains how to

implement a sync algorithm in the style of CouchDB on your own

A Comparison of Offline Sync Protocols and Implementations

Offline data synchronization: Discusses different strategies for offline data sync, and when

to use which.

Transaction Processing: Concepts and Techniques

Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency

Control and Recovery

Why is a dirty flag enough on the client? Why don’t we need local revisions?

Device A is offline, and the user changes an entry.1

The user sends this changed entry to Device B (say, via git).2

The user further modifies the entry on Device B.3

The user syncs Device B with the server.4

The user syncs Device A with the server.5

More Readings

•

•

•

•

•

Developer Documentation

Code Howtos / Remote Storage / Remote SQL Storage

For user documentation, see https://docs.jabref.org/collaborative-work/sqldatabase.

Synchronization times may get long when working with a large database containing several

thousand entries. Therefore, synchronization only happens if several conditions are fulfilled:

Edit to another field.

Major changes have been made (pasting or deleting more than one character).

Class org.jabref.logic.util.CoarseChangeFilter.java checks both conditions.

Remaining changes that have not been synchronized yet are saved at closing the database

rendering additional closing time. Saving is realized in

org.jabref.logic.shared.DBMSSynchronizer.java . Following methods account for synchronization

modes:

pullChanges synchronizes the database unconditionally.

pullLastEntryChanges synchronizes only if there are remaining entry changes. It is invoked

when closing the shared database (closeSharedDatabase).

The following examples base on PostgreSQL. Other databases work similar.

The database structure is created at org.jabref.logic.shared.PostgreSQLProcessor#setUp.

ENTRY

serial shared_id

varchar type

int version

FIELD

int entry_shared_id

varchar name

text value

METADATA

varchar key

text value

contains

Remote SQL Storage

Handling large shared databases

•

•

•

•

Database structure

The “secret sauce” is the version of an entry. This version is used as version in the sense of an

Optimistic Offline Lock, which in turn is a well-established technique to prevent conflicts in

concurrent business transactions. It assumes that the chance of conflict is low.

Implementation details are found at https://www.baeldung.com/cs/offline-concurrency-control.

The shared_id and version are handled in org.jabref.model.entry.SharedBibEntryData .

PostgreSQL supports to register listeners on the database on changes. (MySQL does not). The

listening is implemented at org.jabref.logic.shared.listener.PostgresSQLNotificationListener . It

“just” fetches updates from the server when a change occurred there. Thus, the changes are

not actively pushed from the server, but still need to be fetched by the client.

Synchronization

Developer Documentation

Code Howtos / Remote Storage

JabRef supports kinds of remote storage:

JabDrive

SQL databases

The first one is the more modern approach allowing offline-work. The second approach makes

use of the SQL features of databases and require direct online connections.

More details in JabDrive and SQL Storage respectively.

Remote JabDrive storage

Remote SQL Storage

Remote Storage

•

•

TABLE OF CONTENTS

•

•

Developer Documentation

Code Howtos / Testing JabRef

In JabRef, we mainly rely on basic JUnit unit tests to increase code coverage.

Imagine you want to test the method format(String value) in the class BracesFormatter which

removes double braces in a given string.

Placing: all tests should be placed in a class named classTest , e.g. BracesFormatterTest .

Naming: the name should be descriptive enough to describe the whole test. Use the format

methodUnderTest_ expectedBehavior_context (without the dashes). So for example

formatRemovesDoubleBracesAtBeginning . Try to avoid naming the tests with a test prefix since this

information is already contained in the class name. Moreover, starting the name with test

leads often to inferior test names (see also the Stackoverflow discussion about naming).

Test only one thing per test: tests should be short and test only one small part of the

method. So instead of

we would have five tests containing a single assert statement and named accordingly

(formatDoesNotChangeStringWithoutBraces , formatDoesNotRemoveSingleBrace , , etc.). See JUnit

AntiPattern for background.

Do not just test happy paths, but also wrong/weird input.

It is recommended to write tests before you actually implement the functionality (test

driven development).

Bug fixing: write a test case covering the bug and then fix it, leaving the test as a security

that the bug will never reappear.

Do not catch exceptions in tests, instead use the assertThrows(Exception.class, () ->

doSomethingThrowsEx()) feature of junit-jupiter to the test method.

IntelliJ has build in test coverage reports. Choose “Run with coverage”.

Testing JabRef

General hints on tests

•

•

•

 void format() {

 assertEqual("test", format("test"));

 assertEqual("{test", format("{test"));

 assertEqual("test", format("test}}"));

 }

•

•

•

•

Coverage

For a full coverage report as HTML, execute the gradle task jacocoTestReport (available in the

“verification” folder in IntelliJ). Then, you will find <build/reports/jacoco/test/html/index.html>

which shows the coverage of the tests.

Instead of

use

Similarly, to compare lists, instead of following code:

use the following code:

Use the assertEquals methods in BibtexEntryAssert to check that the correct BibEntry is

returned.

If you need a temporary file in tests, use the @TempDir annotation:

to the test class. A temporary file is now created by Files.createFile(path) . Using this pattern

automatically ensures that the test folder is deleted after the tests are run. See

https://www.geeksforgeeks.org/junit-5-tempdir/ for more details.

Lists in tests

assertTrue(actualList.isEmpty());

assertEquals(List.of(), actualList);

assertEquals(2, actualList.size());

assertEquals("a", actualList.get(0));

assertEquals("b", actualList.get(1));

assertEquals(List.of("a", "b"), actualList);

BibEntries in tests

•

Files and folders in tests

class TestClass{

 @Test

 void deletionWorks(@TempDir Path tempDir) {

 }

}

Sometimes it is necessary to load a specific resource or to access the resource directory

When the directory is needed, it is important to first point to an actual existing file. Otherwise

the wrong directory will be returned.

If you modify preference, use following pattern to ensure that the stored preferences of a

developer are not affected:

Or even better, try to mock the preferences and insert them via dependency injection.

To test that a preferences migration works successfully, use the mockito method verify . See

PreferencesMigrationsTest for an example.

To quickly host a local PostgreSQL database, execute following statement:

Set the environment variable DBMS to postgres (or leave it unset)

Then, all DBMS Tests (annotated with @org.jabref.testutils.category.DatabaseTest) run properly.

Loading Files from Resources

Path resourceDir = Paths.get(MSBibExportFormatTestFiles.class.getResource("MsBibExportFormatTest1.bib").

Preferences in tests

@Test

public void getTypeReturnsBibLatexArticleInBibLatexMode() {

 // Mock preferences

 PreferencesService mockedPrefs = mock(PreferencesService.class);

 GeneralPreferences mockedGeneralPrefs = mock(GeneralPReferences.class);

 // Switch to BibLatex mode

 when(mockedPrefs.getGeneralPrefs()).thenReturn(mockedGeneralPrefs);

 when(mockedGeneralPrefs.getDefaultBibDatabaseMode())

 .thenReturn(BibDatabaseMode.BIBLATEX);

 // Now test

 EntryTypes biblatexentrytypes = new EntryTypes(mockedPrefs);

 assertEquals(BibLatexEntryTypes.ARTICLE, biblatexentrytypes.getType("article"));

}

Database tests

PostgreSQL

docker run -d -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres -e POSTGRES_DB=postgres -p 5432:54

A MySQL DBMS can be started using following command:

Set the environment variable DBMS to mysql .

Fetcher tests can be run locally by executing the Gradle task fetcherTest . This can be done by

running the following command in the command line:

Alternatively, if one is using IntelliJ, this can also be done by double-clicking the fetcherTest

task under the other group in the Gradle Tool window (JabRef > Tasks > other > fetcherTest).

In case the output is “No matching tests found”, the wrong test category is used.

Check “Run/Debug Configurations”

Example

This tells Gradle that PdfMergeMetadataImporterTest should be executed as database test.

However, it is marked as @FetcherTest . Thus, change :databaseTest to :fetcherTest to get the test

running.

On top of basic unit testing, there are more ways to test a software:

Type Techniques Tool (Java) Kind of tests Used In JabRef

Functional

Dynamics, black

box, positive and

negative

JUnit-

QuickCheck

Random data

generation

No, not intended,

because other test

kinds seem more

helpful.

Functional

Dynamics, black

box, positive and

negative

GraphWalker Model-based

No, because the

BibDatabase doesn’t

need to be tests

MySQL

docker run -e MYSQL_ROOT_PASSWORD=root -e MYSQL_DATABASE=jabref -p 3800:3307 mysql:8.0 --port=3307

Fetchers in tests

./gradlew fetcherTest

“No matching tests found”

:databaseTest --tests "org.jabref.logic.importer.fileformat.pdf.PdfMergeMetadataImporterTest.pdfMetadata

Advanced testing and further reading

Type Techniques Tool (Java) Kind of tests Used In JabRef

Functional

Dynamics, black

box, positive and

negative

TestFX GUI Tests Yes

Functional
Dynamics, black

box, negative
Lincheck

Testing concurrent

algorithms
No

Functional
Dynamics, white

box, negative
PIT Mutation No

Functional

Dynamics, white

box, positive and

negative

Mockito Mocking Yes

Non-

functional

Dynamics, black

box, positive and

negative

JETM, Apache

JMeter

Performance

(performance testing

vs load testing

respectively)

No

Structural Static, white box CheckStyle
Constient formatting

of the source code
Yes

Structural
Dynamics, white

box
SpotBugs

Reocurreing bugs

(based on

experience of other

projects)

No

Developer Documentation

Code Howtos / Useful development tooling

This page lists some software we consider useful.

Refined GitHub - GitHub on steroids

GitHub Issue Link Status - proper coloring of linked issues and PRs.

Codecov Browser Extension - displaying code coverage directly when browsing GitHub

Sourcegraph Browser Extension - Navigate through source on GitHub

Here, we collect some helpful git hints

https://github.com/blog/2019-how-to-undo-almost-anything-with-git

So you need to change your commit

awesome hints and tools regarding git: https://github.com/dictcp/awesome-git

Precondition: JabRef/jabref is configured as upstream.

Fetch recent commits and prune non-existing branches: git fetch upstream --prune

Merge recent commits: git merge upstream/main

If there are conflicts, resolve them

Reset index to upstream/main: git reset upstream/main

Review the changes and create a new commit using git gui: git gui

Do a force push: git push -f origin

See also: https://help.github.com/articles/syncing-a-fork/

(As Administrator - one time)

Useful development tooling

Browser plugins

•

•

•

•

git hints

•

•

•

Rebase everything as one commit on main

•

•

•

•

•

•

•

Tooling for Windows

Install chocolatey1

choco install git.install -y --params "/GitAndUnixToolsOnPath /WindowsTerminal"2

choco install notepadplusplus3

If you want to have your JDK also managed via chocolatey: choco install temurin4

Then, each weak do choco upgrade all to ensure all tooling is kept updated.

Use git for windows, no additional git tooling required

Git Credential Manager for Windows is included. Ensure that you include that in the

installation. Aim: Store password for GitHub permanently for https repository locations

Use notepad++ as editor for git rebase -i

choco install conemu clink

ConEmu -> Preview Version - Aim: Colorful console with tabs

At first start:

“Choose your startup task …”: `{Bash::Git bash}}

OK

Upper right corner: “Settings…” (third entrry Eintrag)

Startup/Tasks: Choose task no. 7 (“Bash::Git bash”). At “Task parameters” /dir C:\git-

repositories\jabref\jabref

Save Settings

clink - Aim: Unix keys (Alt+B, Ctrl+S, etc.) also available at the prompt of cmd.exe

Cmder - bundles ConEmu plus clink

Validate XMP: https://www.pdflib.com/pdf-knowledge-base/xmp/free-xmp-validator

General git tooling on Windows

•

•

•

Better console applications

CONEMU PLUS CLINK

•

•

•

•

•

•

•

•

•

OTHER BUNDLES

•

Tools for working with XMP

•

Developer Documentation

Code Howtos / UI Design Recommendations

Designing More Efficient Forms: Structure, Inputs, Labels and Actions

Input form label alignment top or left?

For a usual form, place the label above the text field

If the user uses the form often to edit fields, then it might make sense to switch to left-

aligned labels

More information:

StackOverflow: What are some alternatives to the phrase “Are you sure you want to XYZ” in

confirmation dialogs?.

JabRef issue discussing Yes/No/Cancel: koppor#149.

req~ui.dialogs.confirmation.naming~1

Needs: impl

Only validate input after leaving the field (or after the user stopped typing for some time)

The user shouldn’t be able to submit the form if there are errors

However, disabling the submit button in case there are errors is also not optimal. Instead,

clicking the submit button should highlight the errors.

Empty required files should not be marked as invalid until the user a) tried to submit the

form or b) focused the field, deleted its contents and then left the field (see Example).

Ideally, the error message should be shown below the text field and not as a tooltip (so that

users quickly understand what’s the problem). For example as in Boostrap.

UI Design Recommendations

•

•

•

•

Designing GUI Confirmation Dialogs

Avoid asking questions1

Be as concise as possible2

Identify the item at risk3

Name your buttons for the actions4

•

•

Name your buttons for the actions

Form validation

•

•

•

•

•

Developer Documentation

Code Howtos / XMP Parsing

Example XMP metadata from a PDF file

(src/test/resources/org/jabref/logic/importer/fileformat/pdf/2024_SPLC_Becker.pdf):

XMP Parsing

<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?>

<x:xmpmeta xmlns:x="adobe:ns:meta/">

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">

 <dc:format>application/pdf</dc:format>

 <dc:identifier>doi:10.1145/3646548.3672587</dc:identifier>

 </rdf:Description>

 <rdf:Description rdf:about="" xmlns:prism="http://prismstandard.org/namespaces/basic/2.1/">

 <prism:doi>10.1145/3646548.3672587</prism:doi>

 <prism:url>https://doi.org/10.1145/3646548.3672587</prism:url>

 </rdf:Description>

 <rdf:Description rdf:about="" xmlns:crossmark="http://crossref.org/crossmark/1.0/">

 <crossmark:MajorVersionDate>2024-09-02</crossmark:MajorVersionDate>

 <crossmark:CrossmarkDomainExclusive>true</crossmark:CrossmarkDomainExclusive>

 <crossmark:CrossMarkDomains>

 <rdf:Seq>

 <rdf:li>dl.acm.org</rdf:li>

 </rdf:Seq>

 </crossmark:CrossMarkDomains>

 <crossmark:DOI>10.1145/3646548.3672587</crossmark:DOI>

 </rdf:Description>

 <rdf:Description rdf:about="" xmlns:pdfx="http://ns.adobe.com/pdfx/1.3/">

 <pdfx:CrossMarkDomains>

 <rdf:Seq>

 <rdf:li>dl.acm.org</rdf:li>

 </rdf:Seq>

 </pdfx:CrossMarkDomains>

 <pdfx:CrossmarkDomainExclusive>true</pdfx:CrossmarkDomainExclusive>

 <pdfx:doi>10.1145/3646548.3672587</pdfx:doi>

 <pdfx:CrossmarkMajorVersionDate>2024-09-02</pdfx:CrossmarkMajorVersionDate>

 </rdf:Description>

 </rdf:RDF>

org.apache.xmpbox.xml.DomXmpParser cannot ignore unknown namespaces. Therefore, we need to

exact the known elements.

</x:xmpmeta>

<?xpacket end="w"?>

Developer Documentation

This page provides some development support in the form of howtos. See also High Level

Documentation.

We really recommend reading the book Java by Comparison.

Please read https://github.com/cxxr/better-java.

try not to abbreviate names of variables, classes or methods

use lowerCamelCase instead of snake_case

name enums in singular, e.g. Weekday instead of Weekdays (except if they represent flags)

JabRef uses a fork of the afterburner.fx framework by Adam Bien.

The main idea is to get instances by using Injector.instantiateModelOrService(X.class) , where X is

the instance one needs. The method instantiateModelOrService checks if there is already an

instance of the given class. If yes, it returns it. If not, it creates a new one. A singleton can be

added by com.airhacks.afterburner.injection.Injector#setModelOrService(X.class, y) , where X is the

class and y the instance you want to inject.

We try to build a cleanup mechanism based on formatters. The idea is that we can register

these actions in arbitrary places, e.g., onSave, onImport, onExport, cleanup, etc. and apply

them to different fields. The formatters themselves are independent of any logic and therefore

easy to test.

Example: NormalizePagesFormatter

Drag and Drop makes usage of the Dragboard. For JavaFX the following tutorial is helpful. Note

that the data has to be serializable which is put on the dragboard. For drag and drop of Bib-

entries between the maintable and the groups panel, a custom Dragboard is used,

CustomLocalDragboard which is a generic alternative to the system one.

For accessing or putting data into the Clipboard use the ClipboardManager .

Code Howtos

Generic code how tos

•

•

•

Dependency injection

Cleanup and Formatters

Drag and Drop

JabRefFrame and BasePanel are the two main classes. You should never directly call them, instead

pass them as parameters to the class.

JabRef stores files relative to one of multiple possible directories. The convert the relative path

to an absolute one, there is the find method in FileUtil :

String path Can be the files name or a relative path to it. The Preferences should only be

directly accessed in the GUI. For the usage in logic pass them as parameter

JabRef offers multiple directories per library to store a file.. When adding a file to a library, the

path should be stored relative to “the best matching” directory of these. This is implemented

in FileUtil :

@comment{jabref-meta: fileDirectory:<directory>

“fileDirectory” is determined by Globals.pref.get(“userFileDir”) (which defaults to

“fileDirectory”

There is also “fileDirectory-<username>”, which is determined by

Globals.prefs.get(“userFileDirIndividual”)

Used at DatabasePropertiesDialog

model and logic must not know JabRefPreferences . See ProxyPreferences for encapsulated

preferences and https://github.com/JabRef/jabref/pull/658 for a detailed discussion.

See

https://github.com/JabRef/jabref/blob/master/src/main/java/org/jabref/logic/preferences/Timest

ampPreferences.java (via https://github.com/JabRef/jabref/pull/3092) for the current way how

to deal with preferences.

Defaults should go into the model package. See Comments in this Commit

Get the JabRef frame panel

Get Absolute Filename or Path for file in File directory

org.jabref.logic.util.io.FileUtil.find(org.jabref.model.database.BibDatabaseContext, java.lang.String, o

Get a relative filename (or path) for a file

org.jabref.logic.util.io.FileUtil.relativize(java.nio.file.Path, org.jabref.model.database.BibDatabaseCo

Setting a Directory for a .bib File

•

•

•

•

How to work with Preferences

Global variables should be avoided. Try to pass them as dependency.

Database.addDatabaseChangeListener does not work as the DatabaseChangedEvent does not provide the

field information. Therefore, we have to use

BibtexEntry.addPropertyChangeListener(VetoableChangeListener listener) .

You can normalize the authors using

org.jabref.model.entry.AuthorList.fixAuthor_firstNameFirst(String) . Then the authors always look

nice. The only alternative containing all data of the names is

org.jabref.model.entry.AuthorList.fixAuthor_lastNameFirst(String) . The other fix... methods omit

data (like the “von” parts or the junior information).

Benchmarks can be executed by running the jmh gradle task (this functionality uses the

JMH Gradle plugin)

Best practices:

Read test input from @State objects

Return result of calculations (either explicitly or via a BlackHole object)

List of examples

Try out the YourKit Java Profiler.

When creating an equals method follow:

UI

“Special Fields”

keywords sync

Working with BibTeX data

Working with authors

Benchmarks

•

•

•

•

•

Measure performance

equals

Use the == operator to check if the argument is a reference to this object. If so, return true .1

Use the instanceof operator to check if the argument has the correct type. If not, return

false .

2

Cast the argument to the correct type.3

Also, note:

Always override hashCode when you override equals (hashCode also has very strict rules) (Item

9 ofEffective Java)

Don’t try to be too clever

Don’t substitute another type for Object in the equals declaration

Always try to use the methods from the nio-package. For interoperability, they provide

methods to convert between file and path.

https://docs.oracle.com/javase/tutorial/essential/io/path.html Mapping between old methods

and new methods https://docs.oracle.com/javase/tutorial/essential/io/legacy.html#mapping

The LibreOffice Panel

Code Quality

Custom SVG icons

Error Handling in JabRef

Event Bus and Event System

Fetchers

Frequently Asked Questions (FAQ)

HTTP Server

IntelliJ Hints

JPackage: Creating a binary and debug it

JabRef’s handling of BibTeX

JavaFX

Localization

Logging

Remote Storage

Testing JabRef

UI Design Recommendations

Useful development tooling

XMP Parsing

For each “significant” field in the class, check if that field of the argument matches the

corresponding field of this object. If all these tests succeed, return true otherwise, return

false .

4

When you are finished writing your equals method, ask yourself three questions: Is it

symmetric? Is it transitive? Is it consistent?

5

•

•

•

Files and Paths

TABLE OF CONTENTS

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Developer Documentation

Please head to our contributing guide in the main repository.

Contributing

Developer Documentation

Decision Records / Use Markdown Architectural Decision Records

We want to record architectural decisions made in this project independent whether decisions

concern the architecture (“architectural decision record”), the code, or other fields. Which

format and structure should these records follow?

MADR 4.0.0 – The Markdown Architectural Decision Records

Michael Nygard’s template – The first incarnation of the term “ADR”

Sustainable Architectural Decisions – The Y-Statements

Other templates listed at

https://github.com/joelparkerhenderson/architecture_decision_record

Formless – No conventions for file format and structure

Chosen option: “MADR 4.0.0”, because

Implicit assumptions should be made explicit. Design documentation is important to enable

people understanding the decisions later on. See also “A rational design process: How and

why to fake it”.

MADR allows for structured capturing of any decision.

The MADR format is lean and fits our development style.

The MADR structure is comprehensible and facilitates usage & maintenance.

The MADR project is vivid.

Use Markdown Architectural Decision

Records

Context and Problem Statement

Considered Options

•

•

•

•

•

Decision Outcome

•

•

•

•

•

Developer Documentation

Decision Records / Use Crowdin for translations

The JabRef UI is offered in multiple languages. It should be easy for translators to translate the

strings.

Use Crowdin

Use popeye

Use Lingohub

Keep current GitHub flow. See the Step-by-step guide.

Chosen option: “Use Crowdin”, because Crowdin is easy to use, integrates in our GitHub

workflow, and is free for OSS projects.

Use Crowdin for translations

Context and Problem Statement

Considered Options

•

•

•

•

Decision Outcome

Developer Documentation

Decision Records / Use SLF4J together with log4j2 for logging

Up to version 4.1 JabRef uses apache-commons-logging 1.2 for logging errors and messages.

However, this is not compatible with java 9 and is superseded by log4j.

SLF4J provides a façade for several logging frameworks, including log4j and supports

already java 9

Log4j is already defined as dependency and SLF4J has already been required by a third

party dependency

Log4j2

SLF4J with Log4j2 binding

SLF4J with Logback binding

Chosen option: “SLF4J with Log4j2 binding”, because comes out best (see below).

Good, because dependency already exists

Good, because Java 9 support since version 2.10

Bad, because direct dependency

Good, because it only requires minimal changes to our logging infrastructure

Good, because Apache Log4j 2 is an upgrade to Log4j that provides significant

improvements over its predecessor, Log4j 1.x, and provides many of the improvements

available in Logback while fixing some inherent problems in Logback’s architecture.

Good, because supports other loggers as well

Use SLF4J together with log4j2 for logging

Context and Problem Statement

Decision Drivers

•

•

Considered Alternatives

•

•

•

Decision Outcome

Pros and Cons of the Options

Log4j2

•

•

•

SLF4J with log4j2 binding

•

•

•

Good, because Java 9 support

Good, because already defined

Good, because migration tool available

Good, because it is a façade for several loggers. Thus, the underlying implementation can

easily be changed in the future.

Bad, because logger statements require a slight different syntax

Good, because migration tool available

Good, because native implementation of SLF4J

Bad, because Java 9 support only available in alpha

Bad, because different syntax than log4j/commons logging

•

•

•

•

•

SLF4J with Logback binding

•

•

•

•

Developer Documentation

Decision Records / Use Gradle as build tool

Which build tool should be used?

Maven

Gradle

Ant

Chosen option: “Gradle”, because it is lean and fits our development style.

Good, because there is a plugin for almost everything

Good, because it has good integration with third party tools

Good, because it has robust performance

Good, because it has a high popularity

Good, if one favors declarative over imperative

Bad, because getting a dependency list is not straight forward

Bad, because it based on a fixed and linear model of phases

Bad, because it is hard to customize

Bad, because it needs plugins for everything

Bad, because it is verbose leading to huge build files

Good, because its build scripts are short

Good, because it follows the convention over configuration approach

Good, because it offers a graph-based task dependencies

Good, because it is easy to customize

Use Gradle as build tool

Context and Problem Statement

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

Maven

•

•

•

•

•

•

•

•

•

•

Gradle

•

•

•

•

Good, because it offers custom dependency scopes

Good, because it has good community support

Good, because its performance can be 100 times more than maven’s performance.

Bad, because not that many plugins are available/maintained yet

Bad, because it lacks a wide variety of application server integrations

Bad, because it has a medium popularity

Bad, because it allows custom build scripts which need to be debugged

Good, because it offers a lot of control over the build process

Good, because it has an agile dependency manager

Good, because it has a low learning curve

Bad, because build scripts can quickly become huge

Bad, because everything has to be written from scratch

Bad, because no conventions are enforced which can make it hard to understand someone

else’s build script

Bad, because it has nearly no community support

Bad, because it has a low popularity

Bad, because it offers too much freedom

GADR: https://github.com/adr/gadr-java/blob/master/gadr-java–build-tool.md

•

•

•

•

•

•

•

Ant

•

•

•

•

•

•

•

•

•

Links

•

Developer Documentation

Decision Records / Use MariaDB Connector

JabRef needs to connect to a MySQL database. See Shared SQL Database for more

information.

Use MariaDB Connector

Use MySQL Connector

Other alternatives are listed at https://stackoverflow.com/a/31312280/873282.

Chosen option: “Use MariaDB Connector”, because comes out best (see below).

The MariaDB Connector is a LGPL-licensed JDBC driver to connect to MySQL and MariaDB.

Good, because can be used as drop-in replacement for MySQL connector

The MySQL Connector is distributed by Oracle and licensed under GPL-2. Source:

https://github.com/mysql/mysql-connector-j/blob/release/9.x/LICENSE. Oracle added the

Universal FOSS Exception, Version 1.0 to it, which seems to limit the effects of GPL. More

information on the FOSS Exception are available at

https://www.mysql.com/de/about/legal/licensing/foss-exception/.

Good, because it stems from the same development team than MySQL

Bad, because the “Universal FOSS Exception” makes licensing more complicated.

Use MariaDB Connector

Context and Problem Statement

Considered Options

•

•

Decision Outcome

Pros and Cons of the Options

Use MariaDB Connector

•

Use MySQL Connector

•

•

Developer Documentation

Decision Records / Fully Support UTF-8 Only For LaTeX Files

The feature search for citations displays the content of LaTeX files. The LaTeX files are text

files and might be encoded arbitrarily.

Support UTF-8 encoding only

Support ASCII encoding only

Support (nearly) all encodings

Chosen option: “Support UTF-8 encoding only”, because comes out best (see below).

All content of LaTeX files are displayed in JabRef

When a LaTeX files is encoded in another encoding, the user might see strange characters

in JabRef

Good, because covers most tex file encodings

Good, because easy to implement

Bad, because does not support encodings used before around 2010

Good, because easy to implement

Bad, because does not support any encoding at all

Fully Support UTF-8 Only For LaTeX Files

Context and Problem Statement

Considered Options

•

•

•

Decision Outcome

Positive Consequences

•

Negative Consequences

•

Pros and Cons of the Options

Support UTF-8 encoding only

•

•

•

Support ASCII encoding only

•

•

Support (nearly) all encodings

Good, because easy to implement

Bad, because it relies on Apache Tika’s CharsetDetector , which resides in tika-parsers .

This causes issues during compilation (see

https://github.com/JabRef/jabref/pull/3421#issuecomment-524532832).

Example: error: module java.xml.bind reads package javax.activation from both java.activation and

jakarta.activation .

•

•

Developer Documentation

Decision Records / Only translated strings in language file

JabRef has translation files JabRef_it.properties , … There are translated and untranslated

strings. Which ones should be in the translation file?

Translators should find new strings to translate easily

New strings to translate should be written into JabRef_en.properties to enable translation by

the translators

Crowdin should be kept as translation platform, because 1) it is much easier for the

translators than the GitHub workflow and 2) it is free for OSS projects.

Only translated strings in language file

Translated and untranslated strings in language file, have value the untranslated string to

indicate untranslated

Translated and untranslated strings in language file, have empty to indicate untranslated

Chosen option: “Only translated strings in language file”, because comes out best (see below).

Good, because Crowdin supports it

Bad, because translators need tooling to see untranslated strings

Bad, because issues with FXML (https://github.com/JabRef/jabref/issues/3796)

Good, because no issues with FXML

Good, because Crowdin supports it

Only translated strings in language file

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

Only translated strings in language file

•

•

•

Translated and untranslated strings in language file, have value the untranslated

string to indicate untranslated

•

•

Bad, because untranslated strings cannot be identified easily in Latin languages

Good, because untranslated strings can be identified easily

Good, because works with FMXL (?)

Bad, because Crowdin does not support it

Related to ADR-0001.

•

Translated and untranslated strings in language file, have empty to indicate

untranslated

•

•

•

Links

•

Developer Documentation

Decision Records / Provide a human-readable changelog

Changes of a release have to be communicated. How and which style to use?

Keep-a-changelog format with freedom in the bullet points

Keep-a-changelog format and fixed terms

Chosen option: “Keep-a-changelog format with freedom in the bullet points”, because

Keep-a-changelog structures the changelog

Each entry can be structured to be understandable

Forcing to prefix each line with We fixed , We changed , … seems to be read strange.

We nevertheless try to follow that style.

Further discussion can be found at #2277.

Provide a human-readable changelog

Context and Problem Statement

Considered Options

•

•

Decision Outcome

•

•

•

Developer Documentation

Decision Records / Use public final instead of getters to offer access to immutable variables

When making immutable data accessible in a java class, should it be using getters or by non-

modifiable fields?

Offer public static field

Offer getters

Chosen option: “Offer public static field”, because getters used to be a convention which was

even more manifested due to libraries depending on the existence on getters/setters. In the

case of immutable variables, adding public getters is just useless since one is not hiding

anything.

Shorter code

newcomers could get confused, because getters/setters are still taught

Use public final instead of getters to offer

access to immutable variables

Context and Problem Statement

Considered Options

•

•

Decision Outcome

Positive Consequences

•

Negative Consequences

•

Developer Documentation

Decision Records / Use Plain JUnit5 for advanced test assertions

How to write readable test assertions? How to write readable test assertions for advanced

tests?

Plain JUnit5

Hamcrest

AssertJ

Chosen option: “Plain JUnit5”, because comes out best (see below).

Tests are more readable

More easy to write tests

More readable assertions

More complicated testing leads to more complicated assertions

Homepage: https://junit.org/junit5/docs/current/user-guide/ JabRef testing guidelines:

<../testing.md>

Example:

Use Plain JUnit5 for advanced test

assertions

Context and Problem Statement

Considered Options

•

•

•

Decision Outcome

Positive Consequences

•

•

•

Negative Consequences

•

Pros and Cons of the Options

Plain JUnit5

String actual = markdownFormatter.format(source);

assertTrue(actual.contains("Markup
"));

Good, because Junit5 is “common Java knowledge”

Bad, because complex assertions tend to get hard to read

Bad, because no fluent API

Homepage: https://github.com/hamcrest/JavaHamcrest

Good, because offers advanced matchers (such as contains)

Bad, because not full fluent API

Bad, because entry barrier is increased

Homepage: https://joel-costigliola.github.io/assertj/

Example:

Good, because offers fluent assertions

Good, because allows partial string testing to focus on important parts

Good, because assertions are more readable

Bad, because not commonly used

Bad, because newcomers have to learn an additional language to express test cases

Bad, because entry barrier is increased

Bad, because expressions of test cases vary from unit test to unit test

German comparison between Hamcrest and AssertJ: https://www.sigs-

datacom.de/uploads/tx_dmjournals/philipp_JS_06_15_gRfN.pdf

assertTrue(actual.contains("list item one"));

assertTrue(actual.contains("list item 2"));

assertTrue(actual.contains("> rest"));

assertFalse(actual.contains("\n"));

•

•

•

Hamcrest

•

•

•

AssertJ

assertThat(markdownFormatter.format(source))

 .contains("Markup
")

 .contains("list item one")

 .contains("list item 2")

 .contains("> rest")

 .doesNotContain("\n");

•

•

•

•

•

•

•

Links

•

Developer Documentation

Decision Records / Use H2 as Internal SQL Database

We need to store data internally in a structured way to gain performance.

Easy to integrate

Easy to use

Common technology

H2 Database Engine

SQLite

Chosen option: “H2 Database Engine”, because it was straight-forward to use.

Comparison at SQL Workbench

Use H2 as Internal SQL Database

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

Decision Outcome

Links

•

Developer Documentation

Decision Records / Test external links in documentation

The JabRef repository contains Markdown (.md) files documenting the JabRef code. The

documentation contains links to external resources. For high-quality documentation, external

links should be working.

Checking external links should not cause issues in the normal workflow

Check external links once a month

Check external links in the “checkstyle” task

Do not check external links

Chosen option: “Check external links once a month”, because it provides a basic quality

baseline.

Automatic notification of broken external links

Some external sites need to be disabled. For instance, GitHub.com always returns

“forbidden”.

Contributors find it strange if external links are broken (example: user-documentation#526)

Good, because does not interfere with the normal development workflow

Bad, because an additional workflow is required

Test external links in documentation

Context and Problem Statement

Decision Drivers

•

Considered Options

•

•

•

Decision Outcome

Positive Consequences

•

Negative Consequences

•

•

Pros and Cons of the Options

Check external links once a month

•

•

Good, because no separate workflow is required

Bad, because checks fail independent of the PR (because external web sites can go down

and go up independent of a PR)

Good, because no testing at all is required

Bad, because external links break without any notice

Bad, because external links have to be checked manually

Check external links in the “checkstyle” task

•

•

Do not check external links

•

•

•

Developer Documentation

Decision Records / Handle different bibentry formats of fetchers by adding a layer

All fetchers (except IDFetchers) in JabRef return BibEntries when fetching entries from their

API. Some fetchers directly receive BibTeX entries from their API, the other fetchers receive

their entries in some kind of exchange format such as JSON or XML and then parse this into

BibEntries. Currently, all fetchers either return BibEntries in BibTeX or BibLaTeX format. This

can lead to importing BibEntries of one format in a database of the other format. How can this

inconsistency between fetchers, and their used formats be addressed?

Pass fetchers the format, they have to create entries accordingly (in the correct format).

Pass fetchers the format, they have to call a conversion method if necessary (in the correct

format).

Let the caller handle any format inconsistencies and the conversion.

Introduce a new layer between fetchers and caller, such as a FetcherHandler, that manages

the conversion

Chosen option: “Introduce a new layer between fetchers and caller, such as a FetcherHandler,

that manages the conversion”, because it can compose all steps required during importing,

not only format conversion of fetched entries. As described here (comment)

Good, because fetchers do not have to think about conversion (Separation of concerns)

Good, because no other code that currently relies on fetchers has to do the conversion

Good, because this layer can be used for any kind of import to handle all conversion steps

(not only format). As described here (comment)

Good, because this layer can easily be extended if the import procedure changes

Handle different bibentry formats of

fetchers by adding a layer

Context and Problem Statement

Considered Options

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Introduce a new layer between fetchers and caller, such as a FetcherHandler, that

manages the conversion

•

•

•

•

Bad, because this requires a lot of code changes

Bad, because this has to be tested extensively

Good, because less code has to be written than with option “Pass fetchers the format, they

have to create entries accordingly”

Good, because code is already tested

Good, because keeps all conversion code centralized (code reuse)

Bad, because fetcher first creates the BibEntry in a possibly “wrong” format, this can easily

lead to bugs due to e.g. code changes

Bad, because adds dependency

Good, because fetchers already handle BibEntry creation (in their format of choice). This is

part of his responsibility.

Good, because fetchers only create BibEntries of the “correct” format. At no point there

exists the chance of the wrong format being passed on due to e.g. code changes.

Good, because the conversion does not have to take place

Bad, because fetcher has to “know” all differences of the formats -> clutters the code.

Bad, because this code has to be tested. Conversion already exists.

Good, because fetcher code does not have to change

Good, because fetcher only has to fetch and does not need to know anything about the

formats

Bad, because programmers might assume that a certain format is used, e.g. the preferred

format (which would not work as the databases that imports the entries does not have to

conform to the preferred format)

Bad, because at every place where fetchers are used, and the format matters, conversion

has to be used, creating more dependencies

•

•

Pass fetchers the format, they have to call a conversion method if necessary

•

•

•

•

•

Pass fetchers the format, they have to create entries accordingly

•

•

•

•

•

Let the caller handle any format inconsistencies and the conversion

•

•

•

•

Developer Documentation

Decision Records / Add Native Support for BibLatex-Software

Deciders: Oliver Kopp

Technical Story: 6574-Adding support for biblatex-software

Right now, JabRef does not have support for Biblatex-Software out of the box, users have to

add custom entry types. With citing software becoming fairly common, native support is

helpful.

None of the existing flows should be impacted

Add the new entry types to the existing biblatex types

Add a divider with label Biblatex-Software under which the new entries are listed: Native

support for Biblatex-Software

Support via customized entry types: A user can load a customized bib file

Chosen option: “Add a new divider”, because comes out best (see below).

Inbuilt coverage for a entry type that is getting more and more importance

Adds a little bit more clutter to the Add Entry pane

Good, because there is no need for a new category in the add entry pane

Add Native Support for BibLatex-Software

•

Context and Problem Statement

Decision Drivers

•

Considered Options

•

•

•

Decision Outcome

Positive Consequences

•

Negative Consequences

•

Pros and Cons of the Options

Add the new entry types to the existing biblatex types

•

Good, since this gives the user a bit more clarity

Good, because no code needs to be changed

Bad, because documentation is needed

Bad, because the users are not guided through the UI, but have to do other steps.

Add a divider with label Biblatex-Software under which the new entries are listed:

Native support for Biblatex-Software

•

Support via customized entry types: A user can load a customized bib file

•

•

•

Developer Documentation

Decision Records / Separate URL creation to enable proper logging

Fetchers are failing. The reason why they are failing needs to be investigated.

Claim 1: Knowing the URL which was used to query the fetcher eases debugging

Claim 2: Somehow logging the URL eases debugging (instead of showing it in the debugger

only)

How to properly log the URL used for fetching?

Code should be easy to read

Include URL in the exception instead of logging in case an exception is thrown already (see

https://howtodoinjava.com/best-practices/java-exception-handling-best-practices/#6)

Separate URL creation

Create URL when logging the URL

Include URL creation as statement before the stream creation in the try-with-resources

block

Chosen option: “Separate URL creation”, because comes out best (see below).

Separate URL creation to enable proper

logging

Context and Problem Statement

•

•

Decision Drivers

•

•

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

Separate URL creation

 URL urlForQuery;

 try {

 urlForQuery = getURLForQuery(query);

 } catch (URISyntaxException | MalformedURLException | FetcherException e) {

Good, because exceptions thrown at method are directly caught

Good, because exceptions in different statements belong to different catch blocks

Good, because code to determine URL is written once

OK, because “Java by Comparison” does not state anything about it

Bad, because multiple try/catch statements are required

Bad, because this style seems to be uncommon to Java coders

The “logging” is done when throwing the exception.

Example code:

Good, because code inside the try statement stays the same

 throw new FetcherException(String.format("Search URI %s is malformed", query), e);

 }

 try (InputStream stream = getUrlDownload(complexQueryURL).asInputStream()) {

 ...

 } catch (IOException e) {

 throw new FetcherException("A network error occurred while fetching from " + urlForQuery.toStrin

 } catch (ParseException e) {

 throw new FetcherException("An internal parser error occurred while fetching from " + urlForQuer

 }

•

•

•

•

•

•

Create URL when logging the URL

 try (InputStream stream = getUrlDownload(getURLForQuery(query)).asInputStream()) {

 ...

 } catch (URISyntaxException | MalformedURLException | FetcherException e) {

 throw new FetcherException(String.format("Search URI %s is malformed", query), e);

 } catch (IOException e) {

 try {

 throw new FetcherException("A network error occurred while fetching from " + getURLForQuery(

 } catch (URISyntaxException | MalformedURLException uriSyntaxException) {

 // does not happen

 throw new FetcherException("A network error occurred", e);

 }

 } catch (ParseException e) {

 try {

 throw new FetcherException("An internal parser error occurred while fetching from " + getURL

 } catch (URISyntaxException | MalformedURLException uriSyntaxException) {

 // does not happen

 throw new FetcherException("An internal parser error occurred", e);

 }

 }

•

OK, because “Java by Comparison” does not state anything about it

Bad, because an additional try/catch-block is added to each catch statement

Bad, because needs a throw statement in the URISyntaxException catch block (even though at

this point the exception cannot be thrown), because Java otherwise misses a return

statement.

Good, because the single try/catch-block can be kept

Good, because logical flow is kept

Bad, because does not compile (because URL is not an AutoClosable)

•

•

•

Include URL creation as statement before the stream creation in the try-with-

resources block

 try (URL urlForQuery = getURLForQuery(query); InputStream stream = urlForQuery.asInputStream()) {

 ...

 } catch (URISyntaxException | MalformedURLException | FetcherException e) {

 throw new FetcherException(String.format("Search URI %s is malformed", query), e);

 } catch (IOException e) {

 throw new FetcherException("A network error occurred while fetching from " + urlForQuery.toStrin

 } catch (ParseException e) {

 throw new FetcherException("An internal parser error occurred while fetching from " + urlForQuer

 }

•

•

•

Developer Documentation

Decision Records / Query syntax design

All libraries use their own query syntax for advanced search options. To increase usability,

users should be able to formulate their (abstract) search queries in a query syntax that can be

mapped to the library specific search queries. To achieve this, the query has to be parsed into

an AST.

Which query syntax should be used for the abstract queries? Which features should the syntax

support?

Use a simplified syntax that is derived of the lucene query syntax

Formulate a own query syntax

Chosen option: “Use a syntax that is derived of the lucene query syntax”, because only option

that is already known, and easy to implement. Furthermore parsers for lucene already exist

and are tested. For simplicity, and lack of universal capabilities across fetchers, only basic

query features and therefor syntax is supported:

All terms in the query are whitespace separated and will be ANDed

Default and certain fielded terms are supported

Fielded Terms:

author

title

journal

year (for single year)

year-range (for range e.g. year-range:2012-2015)

The journal , year , and year-range fields should only be populated once in each query

The year and year-range fields are mutually exclusive

Example:

author:"Igor Steinmacher" author:"Christoph Treude" year:2017 will be converted to

author:"Igor Steinmacher" AND author:"Christoph Treude" AND year:2017

Query syntax design

Context and Problem Statement

Considered Options

•

•

Decision Outcome

•

•

•

•

•

•

•

•

•

•

•

•

•

The supported syntax can be expressed in EBNF as follows:

Query := {Clause}

Clause:= [Field] Term

Field := author: | title: | journal: | year: | year-range: | default:

Term := Word | Phrase \

Word can be derived to any series of non-whitespace characters. Phrases are multiple words

wrapped in quotes and may contain white-space characters within the quotes.

Note: Even though this EBNF syntactically allows the creation of queries with year and year-

range fields, such a query does not make sense semantically and therefore will not be

executed.

Already tested

Well known

Easy to implement

Can use an existing parser

Good, because already exists

Good, because already well known

Good, because there already exists a parser for lucene syntax

Good, because capabilities of query conversion can easily be extended using the flexible

lucene framework

Good, because allows for flexibility

Bad, because needs a new parser (has to be decided whether to use ANTLR, JavaCC, or

LogicNG)

Bad, because has to be tested

Bad, because syntax is not well known

Bad, because the design should be easily extensible, requires an appropriate design (high

effort)

Positive Consequences

•

•

•

•

Pros and Cons of the Options

Use a syntax that is derived of the lucene query syntax

•

•

•

•

Formulate a own query syntax

•

•

•

•

•

Developer Documentation

Decision Records / Mutable preferences objects

To create an immutable preferences object every time seems to be a waste of time and

computer memory.

Alter the existing object and return it (by a with* -method, similar to a builder, but changing

the object at hand).

Create a new object every time a preferences object should be altered.

Chosen option: “Alter the exiting object”, because the preferences objects are just wrappers

around the basic preferences framework of JDK. They should be mutable on-the-fly similar to

objects with a Builder inside and to be stored immediately again in the preferences.

Mutable preferences objects

Context and Problem Statement

Considered Options

•

•

Decision Outcome

Developer Documentation

Decision Records / Allow org.jabref.model to access org.jabref.logic

How to create a maintainable architecture?

How to split model, logic, and UI

Newcomers should find the architecture “split” natural

The architecture should be a help (and not a burden)

org.jabref.model uses org.jabref.model (and external libraries) only

org.jabref.model may use org.jabref.logic in defined cases

org.jabref.model and org.jabref.logic may access each other freely

Chosen option: “ org.jabref.model may use org.jabref.logic in defined cases”, because comes

out best (see below).

The model package does not access logic or other packages of JabRef. Access to classes of

external libraries is allowed. The logic package may use the model package.

Good, because clear separation of model and logic

Bad, because this leads to an Anemic Domain Model

Good, because model and logic are still separated

Neutral, because each exception has to be discussed and agreed

Allow org.jabref.model to access

org.jabref.logic

Context and Problem Statement

•

•

Decision Drivers

•

•

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

org.jabref.model uses org.jabref.model (and external libraries) only

•

•

org.jabref.model may use org.jabref.logic in defined cases

•

•

Bad, because newcomers have to be informed that there are certain (agreed) exceptions

for model to access logic

Bad, because may lead to spaghetti code

Bad, because coupling between model and logic is increased

Bad, because cohesion inside model is decreased

•

org.jabref.model and org.jabref.logic may access each other freely

•

•

•

Developer Documentation

Decision Records / Use regular expression to split multiple-sentence titles

Some entry titles are composed of multiple sentences, for example: “Whose Music? A

Sociology of Musical Language”, therefore, it is necessary to first split the title into sentences

and process them individually to ensure proper formatting using ‘Sentence Case’ or ‘Title

Case’

Regular expression

OpenNLP

ICU4J

Chosen option: “Regular expression”, because we can use Java internal classes (Pattern,

Matcher) instead of adding additional dependencies

Less dependencies on third party libraries

Smaller project size (ICU4J is very large)

No need for model data (OpenNLP is a machine learning based toolkit and needs a trained

model to work properly)

Regular expressions can never cover every case, therefore, splitting may not be accurate

for every title

Use regular expression to split multiple-

sentence titles

Context and Problem Statement

Considered Options

•

•

•

Decision Outcome

Positive Consequences

•

•

•

Negative Consequences

•

Developer Documentation

Decision Records / Implement special fields as separate fields

How to implement special fields in BibTeX databases?

Special fields as separate fields

Special fields as keywords

Special fields as values of a special field

Special fields as sub-feature of groups

Chosen option: “Special fields as separate fields”, because comes out best (see below).

Example:

Good, because groups are another view to fields

Good, because a special field leads to a special rendering

Good, because groups pull information from the main table

Good, because hard-coding presets is easier than generic configuration

Good, because direct inclusion in main table

Good, because groups are shown with color bars in the main table

Good, because there are no “hidden groups” in JabRef

Good, because can be easily removed (e.g., by a formatter)

Good, because prepares future power of JabRef to make field properties configurable

Implement special fields as separate

fields

Context and Problem Statement

Considered Options

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Special fields as separate fields

priority = {prio1},

printed = {true},

readstatus = {true},

•

•

•

•

•

•

•

•

•

Bad, because bloats BibTeX file

Bad, because requires more writing when editing BibTeX manually by hand

Example:

Good, because does not bloat the BibTeX file. Typically, 50% of the lines are special fields

Good, because the user can easily assign a special field. E.g, typing “, prio1” into keywords

instead of “ \n priority = {prio1}, ”

Bad, because they need to be synchronized to fields (because otherwise, the maintable

cannot render it)

Bad, because keywords are related to the actual content

Bad, because some users want to keep publisher keywords

Example:

Good, because typing effort

Bad, because handling in table gets complicated → one field is now multiple columns

Good, because one concept rules them all

Good, because groups already provide explicit handling of certain cases: groups based on

keywords and groups based on author’s last names

Bad, because main table implementation changes: Currently, each column in the main

table represents a field. The main may mark entries belonging to certain groups, but does

offer an explicit rendering of groups

Bad, because groups are more a query on data of the entries instead of explicitly assigning

entries to a group

Bad, because explicit assignment and unassigment to a group is not supported by the main

table

•

•

Special fields as keywords

keywords = {prio1, printed, read}

•

•

•

•

•

Special fields as values of a special field

jabrefspecial = {prio1, printed, red}

•

•

Special fields as sub-feature of groups

•

•

•

•

•

Developer Documentation

Decision Records / Use Jackson to parse study.yml

The study definition file is formulated as a YAML document. To access the definition within

JabRef this document has to be parsed. What parser should be used to parse YAML files?

Jackson

SnakeYAML Engine

yamlbeans

eo-yaml

Self-written parser

Chosen option: “Jackson”, because as it is a dedicated library for parsing YAML. yamlbeans also

seem to be viable. They all offer similar functionality.

Good, because established YAML parser library

Good, because supports YAML 1.2

Good, because it can parse LocalDate

Good, because established YAML parser library

Good, because supports YAML 1.2

Bad, because cannot parse YAML into Java DTOs, only into basic Java structures, this then

has to be assembled into DTOs

Good, because established YAML parser library

Good, because nice getting started page

Use Jackson to parse study.yml

Context and Problem Statement

Considered Options

•

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Jackson

•

•

•

SnakeYAML Engine

•

•

•

yamlbeans

•

•

Bad, because objects need to be annotated in the yaml file to be parsed into Java objects

Good, because established YAML parser library

Good, because supports YAML 1.2

Bad, because cannot parse YAML into Java DTOs

Good, because easily customizable

Bad, because high effort

Bad, because has to be tested extensively

Winery’s ADR-0009

Winery’s ADR-0010

•

eo-yaml

•

•

•

Own parser

•

•

•

Links

•

•

Developer Documentation

Decision Records / Keep study as a DTO

The study holds query and library entries that could be replaced respectively with complex

query and fetcher instances. This poses the question: should the study remain a pure DTO

object, or should it contain direct object instances?

Keep study as DTO and use transformers

Replace entries with instances

Chosen option: “Keep study as DTO and use transformers”, because comes out best (see

below).

Good, because no need for custom serialization

Good, because deactivated fetchers can be documented (important for traceable Searching

(SLRs))

Bad, because Entries for databases and queries needed

Good, because no need for database and query entries

Bad, because custom de-/serializers for fetchers and complex queries needed

Bad, because harder to maintain than using “vanilla” Jackson de-/serialization

…

Keep study as a DTO

Context and Problem Statement

Considered Options

•

•

Decision Outcome

Pros and Cons of the Options

Keep study as DTO and use transformers

•

•

•

Replace entries with instances

•

•

•

•

Developer Documentation

Decision Records / Remove stop words during query transformation

When querying for a title of a paper, the title might contain stop words such as “a”, “for”,

“and”. Some data providers return 0 results when querying for a stop word. When

transforming a query to the Lucene syntax, the default Boolean operator and is used. When

using IEEE, this often leads to zero search results.

Consistent to the Google search engine

Allow reproducible searches

Avoid WTFs on the user’s side

Remove stop words from the query

Automatically enclose in quotes if no Boolean operator is contained

Chosen option: “Remove stop words from the query”, because comes out best.

Good, because good search results if no Boolean operators are used

Bad, because when using complex queries and stop words are used alone, they are silently

removed

Good, because good search results if no Boolean operators are used

Bad, because silently leads to different results

Bad, because inconsistent to Google behavior

Remove stop words during query

transformation

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

Decision Outcome

Pros and Cons of the Options

Remove stop words from the query

•

•

Automatically enclose in quotes if no Boolean operator is contained

•

•

•

Developer Documentation

Decision Records / Localized Preferences

Note: This is not implemented yet

Currently, JabRef uses some localized preferences. Example: The email subject for sending

references should be localized. A German user should use “Referenzen”, whereas the English

default is “References”. In JabRef 5.x, it is implemented using defaults.put(EMAIL_SUBJECT,

Localization.lang("References")); and

org.jabref.logic.preferences.JabRefCliPreferences#setLanguageDependentDefaultValues .

We want to remove the localization-dependency from JabRefPreferences . The aim is to move the

Localization to where the string is used.

The problems are:

How to store default values?

How to know if a user changed the string?

What happens if the user changes the UI language? (If he configured a string, that should

be kept. If the did not configure anything, the string should just change).

Mark default value with %

Localize defaults

Store the preference only when it was changed by the user

Store the unlocalized string

Chosen option: “Mark default value with % ”, because it achieves goals without requiring too

much refactoring and reuses a pattern already in use.

If user stores value, the value is stored as is. The default value is stored with % in front. A

caller has to localize any stored value in the preferences if the string is ‘escaped’ by % as the

Localized Preferences

Context and Problem Statement

•

•

•

Considered Options

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Mark default value with %

first character.

Code: If looked-up string starts with % , call Localization.lang of the substring (strating from 2nd

character). Otherwise, use string as is.

Good, because clear distinction between default value and user-supplied value.

Good, because on update of JabRef’s defaults, the string is not modified.

Good, because already used in fxml files to indicate translateable strings.

Good, because consistent to FXML.

Example: defaults.put(EMAIL_SUBJECT, Localization.lang("References")); in JabRefGuiPreferences .

Good, because it is the current implementaton

Bad, because it does not allow for language switching

If the preference was changed by the user, it should be stored. If there is no setting by the

user, leave it empty. When a consumer gets such an empty preference, it knows that it needs

to read the default and localize it.

Good, because easy to implement.

Bad, because this won’t work if users actually want something to be empty.

Consumers then check the string they got as a preference against the defaults. If it matches,

localize it. Otherwise, use it.

•

•

•

•

Localize Defaults

•

•

Store the preference only when it was changed by the user

•

•

Store the unlocalized string

Developer Documentation

Decision Records / Reviewdog findings are code reviews

JabRef offers guidelines to setup the local workspace. There is also a section on JabRef’s code

style. There are pull requests by newcomers, which do not follow that style guide.

How to quickly provide feedback to contributors that checkstyle was not matched?

Be friendly to newcomers

Provide fast feedback to contributors

Lower the workload of maintainers

Keep maintainers focused on the “real” challanges of the code changes

Use Reviewdog’s PullRequest review reporter

Use Reviewdog’s check reporter

Use comment-failure-action

Chosen option: “Use Reviewdog’s PullRequest review reporter”, because resolves force to

provide fast feedback. We do not want to use comment-failure-action , because it might produce

too many comments. We accept that newcomers might be annoyed if quick automatic

feedback by a bot is given: We value the time of our maintainers and want to keep them

focused on the real challanges of the code changes.

Reviewdog findings are code reviews

Context and Problem Statement

Decision Drivers

•

•

•

•

Considered Options

•

•

•

Decision Outcome

Developer Documentation

Decision Records / Use Java Native Access to Determine Default Directory

JabRef needs to propose a file directory to a user for storing files. How to determine the “best”

directory native for the OS the user runs.

Low maintenance effort

Follow JabRef’s architectural guidelines

No additional dependencies

Use Swing’s FileChooser to Determine Default Directory

Use user.home

AppDirs

Java Native Access

Chosen option: “Java Native Access”, because comes out best (see below).

Swing’s FileChooser implemented a very decent directory determination algorithm. It thereby

uses sun.awt.shell.ShellFolder .

Good, because provides best results on most platforms.

Good, because also supports localization of the folder name. E.g., ~/Dokumente in Germany.

Bad, because introduces a dependency on Swing and thereby contradicts the second

decision driver.

Bad, because GraalVM’s support Swing is experimental.

Use Java Native Access to Determine

Default Directory

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Use Swing’s FileChooser to Determine Default Directory

•

•

•

•

Bad, because handles localization only on Windows.

There is System.getProperty("user.home"); .

Bad, because “The concept of a HOME directory seems to be a bit vague when it comes to

Windows”. See https://stackoverflow.com/a/586917/873282 for details.

Bad, because it does not include Documents : As of 2022, System.getProperty("user.home") returns

c:\Users\USERNAME on Windows 10, whereas FileSystemView returns C:\Users\USERNAME\Documents ,

which is the “better” directory.

AppDirs is a small java library which provides a path to the platform dependent special

folder/directory.

Good, because already used in JabRef.

Bad, because does not use Documents on Windows, but rather C:\Users\<Account>\AppData\

<AppAuthor>\<AppName> as basis.

Good, because no additional dependency required, as it is already loaded by AppDirs.

Good, because it is well maintained and widely used.

Good, because it provides direct access to Documents and other system variables.

•

Use user.home

•

•

AppDirs

•

•

Java Native Access

•

•

•

Developer Documentation

Decision Records / Synchronization with remote databases

Synchronize the data in a library to a remote database, while handling conflicts and

supporting offline-first paradigm.

Updates from the remote should be pulled in

No updates should get lost

Easy to implement

Easy to maintain

“Optimistic offline lock” with hashes for local file support

Algorithm based on “optimistic offline lock”

Use CRDTs

Chosen option: “‘Optimistic offline lock’ with hashes for local file support”, because simplest

option to resolves all forces.

The Optimistic Offline Lock is good for synchronizing clients with a server when there is no

other modification of data on client side. However, users might modify the .bib file external of

JabRef. They might also open an existing .bib file and synchronize that. Thus, there are

additions needed to handle the local synchronization.

Moreover, the optimistic offline lock does not say how a set of data is synchronized.

Both shortcomings are resolved by our algotihm. This algorithm is described at Remote

JabDrive storage.

Synchronization with remote databases

Context and Problem Statement

Decision Drivers

•

•

•

•

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

“Optimistic offline lock” with hashes for local file support

Optimistic Offline Lock is a well-established technique to prevent conflicts in concurrent

business transactions. It assumes that the chance of conflict is low. Implementation details are

found at https://www.baeldung.com/cs/offline-concurrency-control.

This is implemented for the SQL database synchronization, which is described at Remote SQL

Storage.

Good, because this algorithm is already in place since 2016 for JabRef synchronizing with a

PostgreSQL backend and a MySQL backend.

Bad, because it assumes the client to be online 100% and does not have handlings of cases

where the client disconnects and alters data in other ways.

See https://automerge.org/blog/automerge-2/ for details.

Bad, because one needs to locally store a lot more metadata (e.g. for operational CRDTs

you essentially need to have the full history of all edits). So you would need another file

next to the bib file to store these.

Bad, because CRDTs are mainly used when you need low latency and high frequency of

edits (e.g. multi-user chat or text editing). Not really something we care about.

Algorithm based on “optimistic offline lock”

•

•

Use CRDTs

•

•

Developer Documentation

Decision Records / Return BibTeX string and CSL Item JSON in the API

In the context of an http server, when a http client GETs a JSON data structure containing

BibTeX data, which format should that have?

Offer both, BibTeX string and CSL JSON

Return BibTeX as is as string

Convert BibTeX to JSON

Chosen option: “Offer both, BibTeX string and CSL JSON”, because there are many browser

libraries out there being able to parse BibTeX. Thus, we don’t need to convert it.

Good, because this follows “Backend for Frontend”

Good, because Word Addin works seamless with the data provided (and does not need

another dependency)

Good, because other clients can work with BibTeX data

Bad, because two serializations have to be kept

Good, because we don’t need to think about any conversion

Bad, because it is unclear how to ship BibTeX data where the entry is dependent on

Bad, because client needs an additional parsing logic

More thought has to be done when converting to JSON. There seems to be a JSON format from

@citation-js/plugin-bibtex. We could do an additional self-made JSON format, but this increases

Return BibTeX string and CSL Item JSON in

the API

Context and Problem Statement

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

Offer both, BibTeX string and CSL JSON

•

•

•

•

Return BibTeX as is as string

•

•

•

Convert BibTeX to JSON

the number of available JSON serializations for BibTeX.

Good, because it could flatten BibTeX data (example: author = first # " and " # second)

Bad, because conversion is difficult in BibTeX special cases. For instance, if Strings are used

(example: author = first # " and " # second) and one doesn’t want to flatten (“normalize”)

this.

Existing JavaScript BibTeX libraries:

bibtex-js

bibtexParseJS

@citation-js/plugin-bibtex

•

•

More Information

•

•

•

Developer Documentation

Decision Records / Exporting multiple entries to CFF

The need for an exporter to CFF format raised the following issue: How to export multiple

entries at once? Citation-File-Format is intended to make software and datasets citable. It

should contain one “main” entry of type software or dataset , a possible preferred citation

and/or several references of any type.

Make exported files compatible with official CFF tools

Make exporting process logical for users

When exporting:

Export non- software entries with dummy topmost sofware and entries as preferred-citation

Export non- software entries with dummy topmost sofware and entries as references

Forbid exporting multiple entries at once

Forbid exporting more than one software entry at once

Export entries in several files (i.e. one / file)

Export several software entries with one of them topmost and all others as references

Export several software entries with a dummy topmost software element and all others as

references

When importing:

Only create one entry / file, enven if there is a preferred-citation or references

Add a JabRef cites relation from software entry to its preferred-citation

Add a JabRef cites relation from preferred-citation entry to the main software entry

Separate software entries from their preferred-citation or references

The decision outcome is the following.

When exporting, JabRef will have a different behavior depending on entries type.

Exporting multiple entries to CFF

Context and Problem Statement

Decision Drivers

•

•

Considered Options

•

•

•

•

•

•

•

•

•

•

•

•

•

Decision Outcome

•

If multiple non- software entries are selected, then exporter uses the references field with

a dummy topmost software element.

If several entries including a software or dataset one are selected, then exporter uses this

one as topmost element and the others as references , adding a potential preferred-

citation for the potential cites element of the topmost software entry.

If several entries including several software ones are selected, then exporter uses a

dummy topmost element, and selected entries are exported as references . The cites or

related fields won’t be exported in this case.

JabRef will not handle cites or related fields for non- software elements.

When importing, JabRef will create several entries: one main entry for the software and

other entries for the potential preferred-citation and references fields. JabRef will link main

entry to the preferred citation using a cites from the main entry, and wil link main entry to

the references using a related from the main entry.

Exported results comply with CFF format

The export process is “logic” : an user who exports multiple files to CFF might find it clear

that they are all marked as references

Importing a CFF file and then exporting the “main” (software) created entry is consistent

and will produce the same result

Importing a CFF file and then exporting one of the preferred-citation or the references

created entries won’t result in the same file (i.e exported file will contain a dummy topmost

software instead of the actual software that was imported)

cites and related fields of non- software entries are not supported

•

•

•

•

•

Positive Consequences

•

•

•

Negative Consequences

•

•

Developer Documentation

Decision Records / Use Apache Commons IO for directory monitoring

In JabRef, there is a need to add a directory monitor that will listen for changes in a specified

directory.

Currently, the monitor is used to automatically update the LaTeX Citations when a LaTeX file in

the LaTeX directory is created, removed, or modified (#10585). Additionally, this monitor will

be used to create a dynamic group that mirrors the file system structure (#10930).

Use java.nio.file.WatchService

Use io.methvin.watcher.DirectoryWatcher

Use org.apache.commons.io.monitor

Chosen option: “Use org.apache.commons.io.monitor”, because comes out best (see below).

Good, because it is a standard Java API for watching directories.

Good, because it does not need polling, it is event-based for most operating systems.

Bad, because:

Use Apache Commons IO for directory

monitoring

Context and Problem Statement

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

java.nio.file.WatchService

•

•

•

Does not detect files coming together with a new folder (JDK issue: JDK-8162948).1

Deleting a subdirectory does not detect deleted files in that directory.2

Access denied when trying to delete the recursively watched directory on Windows (JDK

issue: JDK-6972833).

3

Implemented on macOS by the generic PollingWatchService . (JDK issue: JDK-8293067)4

io.methvin.watcher.DirectoryWatcher

Good, because it implemented on top of the java.nio.file.WatchService , which is a standard

Java API for watching directories.

Good, because it resolves some of the issues of the java.nio.file.WatchService .

Uses ExtendedWatchEventModifier.FILE_TREE on Windows, which resolves issues (1, 3) of the

java.nio.file.WatchService .

On macOS have native implementation based on the Carbon File System Events API, this

resolves issue (4) of the java.nio.file.WatchService .

Bad, because issue (2) of the java.nio.file.WatchService is not resolved.

Good, because there are no observed issues.

Good, because can handle huge amount of files without overflowing.

Bad, because it uses a polling mechanism at fixed intervals, which can waste CPU cycles if

no change occurs.

•

•

•

•

•

org.apache.commons.io.monitor

•

•

•

Developer Documentation

Decision Records / Use currently active tab in Select style (OO Panel) to decide style type

In the Select Style Dialog window of the OpenOffice Panel, in case a style is selected in both

the CSL Styles Tab and JStyles Tab, how to decide which of the two will be activated for use?

Use toggle in Select Style GUI

Use toggle in Preferences

Use Buttons in Select Style GUI

Use Toggle in Main GUI

Use currently active Tab in Select Style GUI and add a notification

Chosen option: “Use currently active Tab in Select Style GUI and add a notification”, because

we already had two tabs indicating a clear separation of choices to the user. It was the most

convenient way without adding extra steps to make the user choose “which style type to use”

before selecting the style, which would be the case in the other options if chosen. The option

is quite intuitive, extensible for working with multiple tabs and make only three to four clicks

are necessary to select a style. Furthermore, the notification makes it clear to the user which

style type as well as which style is selected.

Use currently active tab in Select style

(OO Panel) to decide style type

Context and Problem Statement

Considered Options

•

•

•

•

•

Decision Outcome

Developer Documentation

Decision Records / Store Chats Alongside Database

Chats with AI should be stored somewhere. But where and how?

Inside .bib file

In local user folder

Alongside .bib file

Should work when shared with OneDrive, Dropbox or similar asynchronous services

Should work on network drives

Should be “easy” for users to follow

Should be the same in a shared and non-shared setting (e.g., if Dropbox is used or not

should make a difference)

Chosen option: “In local user folder”, because it’s very hard to work with a shared library, if

two users will work simultaneously on one library, then AI chats file will be absolutely arbitrary

and unmergable.

Good, because we already have a machinery for managing the fields and other information

of BIB entries

Good, because chats are stored inside one file, and if the .bib file is moved, the chat

history is preserved

Bad, because there may be lots of chats and messages and .bib file become too cluttered

and too big which slows down the processing of .bib file

Bad, because if user shares a .bib file, they will also share chat messages, but chats are

not ideal, so user may not want to share them

Store Chats Alongside Database

Context and Problem Statement

Considered Options

•

•

•

Decision Drivers

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Inside .bib file

•

•

•

•

One can use %APPDATA% , where JabRef stores the Lucene index and other information. See

org.jabref.gui.desktop.os.NativeDesktop#getFulltextIndexBaseDirectory for use in JabRef and

https://github.com/harawata/appdirs for general information.

Concrete example for backup folder: C:\Users\${username}\AppData\Local\org.jabref\jabref\backups .

Example filename: 4a070cf3--Chocolate.bib--2024-03-25--14.20.12.bak .

Good, because .bib file is kept clean

Good, because chat messages are saved locally

Neutral, because may be a little harder to implement

Bad, because chat messages cannot be easily shared

Bad, because when path of a .bib file is changed, the chats are lost

Good, because simple implementation

Good, because, the user can send the chats file alongside the .bib file if they want to share

the chats. If users do not want to share the messages, then they can omit the chats file

Good, because .bib files is kept clean

Bad, because user may not expect that a new file will be created alongside their .bib (or

other LaTeX-related) files

Bad, because, it may be not convenient to share both files (.bib file and chats file) in order

to share chat history.

Bad, because if .bib files are edited externally (meaning, not inside the JabRef), then chats

file will not be updated correspondingly

Bad, because if user moves .bib file, they should move the chats file too

Bad, because if two persons work in parallel using a OneDrive share, the file is overwritten

or a conflict file is generated. (Dropbox “conflicted copy”)

In local user folder

•

•

•

•

•

Alongside .bib file

•

•

•

•

•

•

•

•

Developer Documentation

Decision Records / Store Chats in MVStore

This is a follow-up to ADR-032.

The chats with AI should be saved on exit from JabRef and retrieved on launch. We need to

decide the format of the serialized messages.

Easy to implement and maintain

Memory-efficient (because JabRef is said to consume much memory)

JSON

MVStore

Custom format

Chosen option: “MVStore”, because it is simple and memory-efficient.

Good, because allows for easy storing and loading of chats

Good, because cross-platform

Good, because widely used and accepted, so there are lots of libraries for JSON format

Good, because it is even possible to reuse the chats file for other purposes

Good, because has potential for being mergeable by external tooling

Bad, because too verbose (meaning the file size could be much smaller)

Good, because automatic loading and saving to disk

Good, because memory-efficient

Store Chats in MVStore

Context and Problem Statement

Decision Drivers

•

•

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

JSON

•

•

•

•

•

•

MVStore

•

•

Bad, because does not support mutable values in maps.

Bad, because the order of messages need to be “hand-crafted” (e.g., by mapping from an

Integer to the concrete message), since MVStore does not support storing list which

update.

Bad, because it stores data as key-values, but not as a custom data type (like tables in

RDBMS)

Good, because we have the full control

Bad, because involves writing our own language and parser

Bad, because we need to implement optimizations found in databases on our own (storing

some data in RAM, other on disk)

•

•

•

Custom format

•

•

•

Developer Documentation

Decision Records / Use Citation Key for Grouping Chat Messages

As we store chat messages not inside a BibTeX entry in .bib file, the chats file is represented

as a map to BibTeX entry and a list of messages. We need to specify the key of this map. Turns

out, it is not that easy.

The key should exist for every BibTeX entry

The key should be unique along other BibTeX entries in one library file

It is assumed that the key does not change at run-time, between launches of JabRef, and

should be cross-platform (most important)

BibEntry Java object

BibEntry ’s id

BibEntry ’s citation key

BibEntry ’s ShareId

Chosen option: “ BibEntry ’s citation key”, because this is the only choice that complies to the

third point in Decision Drivers.

Easy to implement

Cross-platform

If the citation key is changed externally, then the chats file becomes out-of-sync

Additional user interaction in order to make the citation key complain the first and second

points of Decision Drivers

Use Citation Key for Grouping Chat

Messages

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

•

•

Decision Outcome

Positive Consequences

•

•

Negative Consequences

•

•

Very bad, because it works only at run-time and is not stable.

JabRef stores a unique identifier for each BibEntry . This identifier is created on each load of a

library (and not stored permanently).

Very bad, for the same reasons as BibEntry Java object.

Good, because it is cross-platform, stable (meaning stays the same across launches of

JabRef)

Bad, because it is not guaranteed that citation key exists on BibEntry , and that it is unique

across other BibTeX entries in the library

ADR-0027 describes the procedure of synchronization of a Bib(La)TeX library with a server.

Thereby, also local and remote entries need to be kept consistent. The solution chosen there

is that the server creates a UUID for each entry.

This approach cannot be used here, because there is no server running which we can ask for

an UUID of an entry.

Refer to issue #160 in JabRef main repository

ADR-038 takes another option, because it re-generates the index at each start of JabRef.

Pros and Cons of the Options

BibEntry Java object

BibEntry ’s id

BibEntry ’s citation key

•

•

BibEntry ’s ShareId

More Information

Developer Documentation

Decision Records / Generate Embeddings Online

In order to perform a question and answering (Q&A) session over research papers with large

language model (LLM), we need to process each file: each file should be converted to string,

then this string is split into chunks, and for each chunk an embedding vector should be

generated.

Where these embeddings should be generated?

Local embedding model with langchain4j

OpenAI embedding API

Embedding generation should be fast

Embeddings should have good performance (performance mean they “catch the

semantics” good, see also MTEB)

Generating embeddings should be cheap

Embeddings should not be of a big size

Embedding models and library to generate embeddings shouldn’t be big in distribution

binary.

Chosen option: “OpenAI embedding API”, because the distribution size of JabRef will be nearly

unaffected. Also, it’s fast and has a better performance, in comparison to available in

langchain4j ’s model all-MiniLM-L6-v2 .

Good, because works locally, privacy saved, no Internet connection is required

Good, because user doesn’t pay for anything

Generate Embeddings Online

Context and Problem Statement

Considered Options

•

•

Decision Drivers

•

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Local embedding model with langchain4j

•

•

Neutral, because how fast embedding generation is depends on chosen model. It may be

small and fast, or big and time-consuming

Neutral, because local embedding models may have less performance than OpenAI’s (for

example). *Actually, most embedding models suitable for use in JabRef are about ~50%

performant)

Bad, because embedding generation takes computer resources

Bad, because the only framework to run embedding models in Java is ONNX, and it’s very

heavy in distribution binary

Good, because we delegate the task of generating embeddings to an online service, so the

user’s computer is free to do some other job

Good, because OpenAI models have typically have better performance

Good, because JabRef distribution size will practically be unaffected

Bad, because user should agree to send data to a third-party service, Internet connection is

required

Bad, because user pay for embedding generation (see also OpenAI embedding models

pricing)

•

•

•

•

OpenAI embedding API

•

•

•

•

•

Developer Documentation

Decision Records / Use TextArea for Chat Message Content

This decision record concerns the UI component that is used for rendering the content of chat

messages.

Looks good (renders Markdown)

User can select and copy text

Has good performance

Use TextArea

Use a third-party package

Use a Markdown parser and convert AST nodes to JavaFX TextFlow elements

Use a Markdown parser to convert content into HTML and use a WebView for one message

Use a Markdown parser and WebView for the whole chat history

Chosen option: “Use TextArea ”. All other options require more time to implement. Some of the

options do not support text selection and copying, which for now we value more than

Markdown rendering.

Good, because it is easy to implement

Good, because it supports text selection and copying

Bad, because it does not offer rich text. Thus, Markdown can only be displayed in a plain

text form.

Bad, because default JavaFX’s TextArea shrinks

Use TextArea for Chat Message Content

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

•

•

•

Decision Outcome

Pros and Cons of the Options

Use TextArea

•

•

•

•

Use a third-party package

There seems to be only one package for JavaFX that provides a ready-to-use UI node for

Markdown rendering.

Good, because it is easy to implement

Good, because it renders Markdown

Good, because it renders Markdown to JavaFX nodes (does not use a WebView)

Good, because complex elements from Markdown are supported (tables, code blocks, etc.)

Bad, because it has very strange issues and architectural flaws with styling

Bad, because it does not support text selection and copying (because of underlying JavaFX

Text nodes)

Good, because we will support Markdown

Good, because no need to write a Markdown parser from scratch

Good, because does not use a WebView

Good, because easy styling

Bad, because we need some time to implement Markdown AST -> JavaFX nodes converter

Bad, because rendering tables and code blocks may be hard

Bad, because it will not support text selection and copying

Good, because there are libraries to convert Markdown to HTML

Good, because may be easier to implement than other choices (except TextArea)

Good, because it supports text selection and copying

Bad, because it may be a problem to connect JavaFX CSS to WebView

Bad, because one WebView for one message is resourceful

Good, because there are libraries to convert Markdown to HTML

Good, because it supports text selection and copying

Bad, because it may be a problem to connect JavaFX CSS to WebView

Bad, because it may be a problem to correctly communicate with Java code and WebView to

add new messages

This ADR is highly linked to ADR-0042.

Actually we used an ExpandingTextArea from GemsFX package so the content can occupy as much

space as it needs in the ScrollPane .

•

•

•

•

•

•

Use a Markdown parser and convert AST nodes to JavaFX TextFlow elements

•

•

•

•

•

•

•

Use a Markdown parser to convert content into HTML and use a WebView for one

message

•

•

•

•

•

Use a Markdown parser and WebView for the whole chat history

•

•

•

•

More Information

About the selection and copying, this goes down to fundamental issue from JavaFX. Text and

Label as a whole or a part cannot be selected and/or copied.

Developer Documentation

Decision Records / RAG Architecture Implementation

The current trend in questions and answering (Q&A) using large language models (LLMs) or

other AI related technology is retrieval-augmented-generation (RAG).

RAG is related to Open Generative QA that means LLM (which generates text) is supplied with

context (chunks of information extracted from various sources) and then it generates answer.

RAG architecture consists of these steps (simplified):

How source data is processed:

How answer is generated:

This ADR concerns about implementation of this architecture.

RAG Architecture Implementation

Context and Problem Statement

Indexing: application is supplied with information sources (PDFs, text files, web pages,

etc.)

1

Conversion: files are converted to string (because LLM works on text data).2

Splitting: the string from previous step is split into parts (because LLM has fixed context

window, meaning it cannot handle big documents).

3

Embedding generation: a vector consisting of float values is generated out of chunks.

This vector represents meaning of text and the main propety of such vectors is that chunks

with similar meaning has vectors that are close to. Generation of such a vector is achieved

by using a separate model called embedding model.

4

Store: chunks with relevant metadata (for example, from which document they were

generated) and embedding vector are stored in a vector database.

5

Ask: user asks AI a question.1

Question embedding: an embedding model generates embedding vector of a query.2

Data finding: vector database performs search of most relevant pieces of information (a

finite count of pieces). That’s performed by vector similarity: meaning how close are chunk

vector with question vector.

3

Prompt generation: using a prompt template the user question is augmented with found

information. Found information is not generally supplied to user, as it may seem strange

that a user asked a question that was already supplied with found information. These

pieces of text can be either totally ignored or showed separately in UI tab “Sources”.

4

LLM generation: LLM generates output.5

Prefer good and maintained libraries over self-made solutions for better quality.

The usage of framework should be easy. It would seem strange when user wants to

download a BIB editor, but they are required to install some separate software (or even

Python runtime).

RAG shouldn’t provide any additional money costs. Users should pay only for LLM

generation.

Use a hand-crafted RAG

Use a third-party Java library

Use a standalone application

Use an online service

Chosen option: mix of “Use a hand-crafted RAG” and “Use a third-party Java library”.

Third-party libraries provide excellent resources for connecting to an LLM or extracting text

from PDF files. For RAG, we mostly used all the machinery provided by langchain4j , but there

were moments that should be hand-crafted:

LLM connection: due to https://github.com/langchain4j/langchain4j/issues/1454

(https://github.com/InAnYan/jabref/issues/77) this was delegated to another library jvm-

openai .

Embedding generation: due to https://github.com/langchain4j/langchain4j/issues/1492

(https://github.com/InAnYan/jabref/issues/79), this was delegated to another library djl .

Indexing: langchain4j is just a bunch of useful tools, but we still have to orchestrate when

indexing should happen and what files should be processed.

Vector database: there seems to be no embedded vector database (except SQLite with

sqlite-vss extension). We implemented vector database using MVStore because that was

easy.

Good, because we have the full control over generation

Good, because extendable

Bad, because LLM connection, embedding models, vector storage, and file conversion

should be implemented manually

Decision Drivers

•

•

•

Considered Options

•

•

•

•

Decision Outcome

•

•

•

•

Pros and Cons of the Options

Use a hand-crafted RAG

•

•

•

Bad, because it’s hard to make a complex RAG architecture

Good, because provides well-tested and maintained tools

Good, because libraries have many LLM integrations, as well as embedding models, vector

storage, and file conversion tools

Good, because they provide complex RAG pipelines and extensions

Neutral, because they provide many tools and functions, but they should be orchestrated in

a real application

Bad, because some of them are raw and undocumented

Bad, because they are all similar to langchain

Bad, because they may have bugs

Good, because they provide complex RAG pipelines and extensions

Good, because no additional code is required (except connecting to API)

Neutral, because they provide not that many LLM integrations, embedding models, and

vector storages

Bad, because a standalone app running is required. Users may be required to set it up

properly

Bad, because the internal working of app is hidden. Additional agreement to Privacy or

Terms of Service is needed

Bad, because hard to extend

Good, because all data is processed and stored not on the user’s machine: faster and no

memory is used.

Good, because they provide complex RAG pipelines and extensions

Good, because no additional code is required (except connecting to API)

Neutral, because they provide not that many LLM integrations, embedding models, and

vector storages

Bad, because requires connection to Internet

Bad, because data is processed by a third party company

Bad, because most of them require additional payment (in fact, it would be impossible to

develop a free service like that)

•

Use a third-party Java library

•

•

•

•

•

•

•

Use a standalone application

•

•

•

•

•

•

Use an online service

•

•

•

•

•

•

•

Developer Documentation

Decision Records / Use BibEntry.getId for BibEntry at indexing

The BibEntry class has equals and hashCode implemented on the content of the bib entry. Thus,

if two bib entries have the same type, the same fields, and the same content, they are equal.

This, however, is not useful in the UI, where equal entries are not the same entries.

Simple code

Not changing much other JabRef code

Working Lucene

Use BibEntry.getId for indexing BibEntry

Use System.identityHashCode for indexing BibEntry

Rewrite BibEntry logic

Chosen option: “Use BibEntry.getId for indexing BibEntry ”, because is the “natural” thing to

ensure distinction between two instances of a BibEntry object - regardless of equality.

Use BibEntry.getId for BibEntries at

Indexing

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

•

Decision Outcome

Developer Documentation

Decision Records / Use Apache Velocity as template engine

We need to choose a template engine for custom export filters and AI features.

A discussion of template engines was also in one of the JabRef repos.

A discussion was raised on StackOverflow “Velocity vs. FreeMarker vs. Thymeleaf”.

It should be fast.

It should be possible to provide templates out of String s (required by the AI feature).

It should have short and understandable syntax. Especially, it should work well with unset

fields and empty Optional s.

Apache Velocity

Apache FreeMarker

Thymeleaf

Chosen option: “Apache Velocity”, because “Velocity’s goal is to keep templates as simple as

possible” (source). It is sufficient for our use case. Furthermore, Apache Velocity is lightweight,

and it allows to generate text output. This is a good fit for the AI feature.

Main page: https://velocity.apache.org/.

User guide: https://velocity.apache.org/engine/devel/user-guide.html.

Developer guide: https://velocity.apache.org/engine/devel/developer-guide.html.

Example:

Use Apache Velocity as template engine

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

Apache Velocity

•

•

•

Good, because supports plain text templating.

Good, because it is possible to use String as a template.

Good, because it has simple syntax, and it is designed for simple template workflows.

Good, because it has a stable syntax (source).

Bad, because it is in maintenance mode.

Bad, because removed from Spring 5.0.1

Main page: https://freemarker.apache.org/index.html.

User guide: https://freemarker.apache.org/docs/dgui.html.

Developer guide: https://freemarker.apache.org/docs/pgui_quickstart.html.

Example:

Good, because supports plain text templating.

Good, because it is possible to use String as a template.

Good, because in active development.

Good, because it is powerful and flexible.

Good, because it has extensive documentation (source).

Neutral, because it has received some API and syntax changes recently (source).

Neutral, because FreeMarker is used for complex template workflow, which we do not need

in JabRef.

Main page: https://www.thymeleaf.org/.

Documentation: https://www.thymeleaf.org/doc/tutorials/3.1/usingthymeleaf.html.

You are an AI assistant that analyses research papers. You answer questions about papers.

Here are the papers you are analyzing:

#foreach($entry in $entries)

${CanonicalBibEntry.getCanonicalRepresentation($entry)}

#end

•

•

•

•

•

•

Apache FreeMarker

•

•

•

You are an AI assistant that analyzes research papers. You answer questions about papers.

Here are the papers you are analyzing:

<#list entries as entry>

${CanonicalBibEntry.getCanonicalRepresentation(entry)}

</#list>

•

•

•

•

•

•

•

Thymeleaf

•

•

Example:

Good, because supports plain text templating.

Good, because it is possible to use String as a template.

Good, because it has several template modes, that helps to make HTML, XML, and other

templates.

Good, because it is powerful and flexible.

Neutral, because the API is a bit more complex than the other options.

Bad, because the syntax is more complex than the other options. Especially for text output.

As stated in the template discussion issue, we should choose a template engine, and then

slowly migrate previous code and templates to the chosen engine.

Other template engines are discussed at https://www.baeldung.com/spring-template-engines,

especially #other-template-engines . We did not find any other engine there worth switching to.

You are an AI assistant that analyzes research papers. You answer questions about papers.

Here are the papers you are analyzing:

[# th:each="entry : ${entries}"]

[(${CanonicalBibEntry.getCanonicalRepresentation(entry)})]

[/]

•

•

•

•

•

•

More Information

Developer Documentation

Decision Records / Display front cover for book citations in the Preview tab

Users have requested that the front covers of book citations are displayed in JabRef.

This is discussed on the JabRef forum and raised as a feature request.

We need to decide where the book cover should be placed.

It should not be obtrusive or distracting since the main use of JabRef is for articles not

books.

It should not obstruct the view of existing GUI components, specifically the MainTable or the

information in the EntryEditor’s tabs.

Place the book cover in:

Chosen option: “The PreviewPanel of the EntryEditor”.

Display front cover for book citations in

the Preview tab

Context and Problem Statement

•

•

•

Decision Drivers

•

•

Considered Options

The existing SidePane1

A new SidePane2

The Preview panel of the EntryEditor3

A SplitPane next to the MainTable4

Decision Outcome

Pros and Cons of the Options

Existing SidePane

Good, because it would be unobtrusive

Bad, because it would crowd other panels in the SidePane

Bad, because changing the size of the SidePane would affect both the MainTable and the

EntryEditor.

•

•

•

New right-sided SidePane

Good, if integrated together with entry preview because it would make it easier to view a

citation’s preview.

Bad, because an extra SidePane would make the interface overly complex.

Good, because it would not be obtrusive or distracting.

Bad, if the Entry Editor is closed, users will have to open the Entry Editor and navigate to

the “Preview” or “Required fields” tab to see the cover.

•

•

The PreviewPanel of the EntryEditor

•

•

SplitPane next to the MainTable

Good, because changing the size of this SplitPane would only affect the MainTable.

Bad, because it would obstruct some columns in the MainTable.

•

•

Developer Documentation

For user-facing messages, sometimes, it needs to be counted: E.g., 1 entry updated, 2 entries

updated, etc.

In some languages, there is not only “one” and “more than one”, but other forms:

zero → “لم نزرع أي شجرة حتى الآن”

one → “لقد زرعنا شجرة ١ حتى الآن”

two → “لقد زرعنا شجرتين ٢ حتى الآن”

few → “لقد زرعنا ٣ شجرات حتى الآن”

many → “لقد زرعنا ١١ شجرة حتى الآن”

other → “لقد زرعنا ١٠٠ شجرة حتى الآن”

(Example is from Pluralization: A Guide to Localizing Plurals)

How to localize pluralization?

Good English language

Good localization to other languages

Use one language string for pluralization (no explicit pluralization)

Use singular and plural

Handling of multiple forms

Chosen option: “Use one form only (no explicit pluralization)”, because it is the most easiest to

handle in the code.

Use one language string for pluralization

localization

Context and Problem Statement

•

•

•

•

•

•

Decision Drivers

•

•

Considered Options

•

•

•

Decision Outcome

Pros and Cons of the Options

Example:

Imported 0 entry(s)

Imported 1 entry(s)

Imported 12 entry(s)

There are sub alternatives here:

Imported %0 entry(ies) .

Number of entries imported: %0 (always use “other” plural form)

These arguments are for the general case of using a single text for all kinds of numbers:

Good, because easy to handle in the code

Bad, because reads strange in English UI

Example:

Imported 0 entries

Imported 1 entry

Imported 12 entries

Good, because reads well in English

Bad, because all localizations need to take an if check for the count

Bad, because Arabic not localized properly

Example:

Imported 0 entries

Imported 1 entry

Imported 12 entries

Code: Localization.lang("Imported %0 entries", "Imported %0 entry.", "Imported %0 entries.", "Imported

%0 entries.", "Imported %0 entries.", "Imported %0 entries.", count)

Good, because reads well in English

Bad, because sophisticated localization handling is required

Bad, because no Java library for handling pluralization is known

Bad, because Arabic not localized properly

Use one language string for pluralization (no explicit pluralization)

•

•

•

•

•

•

•

Use singular and plural

•

•

•

•

•

•

Handling of multiple forms

•

•

•

•

•

•

•

More Information

Pluralization: A Guide to Localizing Plurals

Language Plural Rules

Unicode CLDR Project’s Plural Rules

Implementation in Mozilla Firefox

SX discussion on plural forms

•

•

•

•

•

Developer Documentation

Decision Records / Use WebView for Chat Message Content

This decision record concerns the UI component that is used for rendering the content of AI

summaries.

Same as in ADR-0036.

Same as in ADR-0036.

Chosen option: “Use WebView ”.

Some of the options does not support selecting and copying of text. Some options do not

render Markdown.

However, in contrary to ADR-0036, we chose here a WebView , instead of TextArea , because there

is only one summary content in UI (when user switches entries, no new components are

added, rather old ones are rebinding to new entry). It would hurt the performance if we used

WebView for messages, as there could be a lot of messages in one chat.

Same as in ADR-0036.

This ADR is highly linked to ADR-0036.

About the selection and copying, this goes down to fundamental issue from JavaFX. Text and

Label as a whole or a part cannot be selected and/or copied.

Use WebView for Chat Message Content

Context and Problem Statement

Decision Drivers

Considered Options

Decision Outcome

Pros and Cons of the Options

More Information

Developer Documentation

Decision Records / Show merge dialog when importing a single PDF

PDF files are one of the main format for transferring various documents, especially scientific

papers. However, by itself, PDF is like a picture, it contains commands solely for displaying the

human-readable text, but it might not contain computer-readable metadata.

To overcome these problems various heuristics and AI models are used to “convert” a PDF into

a BibTeX entry. However, it also introduces a level of problems, as heuristics are not ideal:

sometimes it works perfectly, but on others it generates random output.

PDF importing in JabRef is done via PdfImporter abstract class and its descendants, and via

PdfMergeMetadataImporter . PdfImporter is typically a single heuristics or method of extracting a

BibEntry from PDF. PdfMergeMetadataImporter collects BibEntry candidates from all PdfImporter s and

merges them automatically into a single BibEntry .

The specific problem JabRef has: should JabRef automate all heuristics (automatically merge

all BibEntry ies from several PdfImporter s) when importing PDF files or should every file be

analysed thoroughly by users?

Option should provide a good-enough quality.

It is desired to have a fine-grained controls of PDF importing for power-users.

Automatically merge all BibEntry candidates from PdfImporters .

Open a merge dialog with all candidates.

Open a merge dialog with all candidates if a single PDF is imported.

Chosen option: “Open a merge dialog with all candidates if a single PDF is imported”, because

comes out best (see below).

Show merge dialog when importing a

single PDF

Context and Problem Statement

Decision Drivers

•

•

Considered Options

•

•

•

Decision Outcome

Good, because minimal user interaction and disruption of flow. It also allows batch-

processing.

Bad, because heuristics are not ideal, and it is even harder to develop a “smarter” merging

algorithm.

Good, because allows for fine-grained import. Some correct field may be overridden by a

wrong field from other importer, which is undesirable for power-users.

Bad, because it is a dialog. If lots of PDFs are imported, then there will be lots of dialogs,

which might be too daunting to process manually.

Explanation:

If a single PDF is imported, then open a merge dialog.

If several PDFs are imported, merge candidates for each PDF automatically.

Outcomes:

Good, because it combines the best of the other two options: Allow both for PDF batch-

processing and for fine-grained control.

Pros and Cons of the Options

Automatically merge all BibEntry candidates from PdfImporters

•

•

Open a merge dialog with all candidates

•

•

Open a merge dialog with all candidates if a single PDF is imported

•

•

•

Developer Documentation

Decision Records / ADR Template

{Describe the context and problem statement, e.g., in free form using two to three sentences

or in the form of an illustrative story. You may want to articulate the problem in form of a

question and add links to collaboration boards or issue management systems.}

{decision driver 1, e.g., a force, facing concern, …}

{decision driver 2, e.g., a force, facing concern, …}

…

{title of option 1}

{title of option 2}

{title of option 3}

…

Chosen option: “{title of option 1}”,

because {justification. e.g., only option,

which meets k.o. criterion decision driver

which resolves

force {force}
…

comes out best

(see below)}.

Good, because {positive consequence, e.g., improvement of one or more desired qualities,

…}

Bad, because {negative consequence, e.g., compromising one or more desired qualities,

…}

…

{short title, representative of solved

problem and found solution}

Context and Problem Statement

Decision Drivers

•

•

•

Considered Options

•

•

•

•

Decision Outcome

Consequences

•

•

•

Confirmation

{Describe how the implementation of/compliance with the ADR can/will be confirmed. Is the

chosen design and its implementation in line with the decision? E.g., a design/code review or a

test with a library such as ArchUnit can help validate this. Note that although we classify this

element as optional, it is included in many ADRs.}

{example | description | pointer to more information | …}

Good, because {argument a}

Good, because {argument b}

Neutral, because {argument c}

Bad, because {argument d}

…

{example description pointer to more information …}

Good, because {argument a}

Good, because {argument b}

Neutral, because {argument c}

Bad, because {argument d}

…

{You might want to provide additional evidence/confidence for the decision outcome here

and/or document the team agreement on the decision and/or define when/how this decision

the decision should be realized and if/when it should be re-visited. Links to other decisions and

resources might appear here as well.}

Pros and Cons of the Options

{title of option 1}

•

•

•

•

•

{title of other option}

•

•

•

•

•

More Information

Developer Documentation

Below, all “architectural decision records” for JabRef are listed. This list uses the TOC

functionality of the Just the Docs Jekyll template.

For new ADRs, please use adr-template.md as basis. More information on MADR is available at

https://adr.github.io/madr/. General information about architectural decision records is

available at https://adr.github.io/.

Use Markdown Architectural Decision Records

Use Crowdin for translations

Use SLF4J together with log4j2 for logging

Use Gradle as build tool

Use MariaDB Connector

Fully Support UTF-8 Only For LaTeX Files

Only translated strings in language file

Provide a human-readable changelog

Use public final instead of getters to offer access to immutable variables

Use Plain JUnit5 for advanced test assertions

Use H2 as Internal SQL Database

Test external links in documentation

Handle different bibentry formats of fetchers by adding a layer

Add Native Support for BibLatex-Software

Separate URL creation to enable proper logging

Query syntax design

Mutable preferences objects

Allow org.jabref.model to access org.jabref.logic

Use regular expression to split multiple-sentence titles

Implement special fields as separate fields

Use Jackson to parse study.yml

Keep study as a DTO

Remove stop words during query transformation

Localized Preferences

Use # as indicator for BibTeX string constants

Decision Records

TABLE OF CONTENTS

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reviewdog findings are code reviews

Use Java Native Access to Determine Default Directory

Store Chats Alongside Database

Synchronization with remote databases

Store Chats in MVStore

Return BibTeX string and CSL Item JSON in the API

Use Citation Key for Grouping Chat Messages

Exporting multiple entries to CFF

Generate Embeddings Online

Use Apache Commons IO for directory monitoring

Use TextArea for Chat Message Content

Use currently active tab in Select style (OO Panel) to decide style type

RAG Architecture Implementation

Use WebView for Chat Message Content

Use BibEntry.getId for BibEntry at indexing

Use Apache Velocity as template engine

Display front cover for book citations in the Preview tab

Show merge dialog when importing a single PDF

ADR Template

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Developer Documentation

Getting into the code / JabRef’s development strategy

We aim to keep up to high-quality code standards and use code quality tools wherever

possible.

To ensure high code-quality,

We follow the principles of Java by Comparison.

We follow the principles of Effective Java.

We use Design Patterns when applicable.

We document our design decisions using the lightweight architectural decision records

MADR.

We review each external pull request by at least two JabRef Core Developers.

Read on about our automated quality checks at Code Quality.

JabRef has automatic checks using GitHub actions in place. One of them is checking for the

formatting of the code. Consistent formatting ensures more easy reading of the code. Thus,

we pay attention that JabRef’s code follows the same code style.

Binaries are created using gradle and are uploaded to https://builds.jabref.org. These binaries

are created without any checks to have them available as quickly as possible, even if the

localization or some fetchers are broken. Deep link to the action:

https://github.com/JabRef/jabref/actions?workflow=Deployment.

The branch main is the main development line and is intended to incorporate fixes and

improvements as soon as possible and to move JabRef forward to modern technologies such

as the latest Java version.

Other branches are used for discussing improvements with the help of pull requests. One can

see the binaries of each branch at https://builds.jabref.org/. Releases mark milestones and are

based on the main branch at a point in time.

We participate in Hacktoberfest.

We participate in Google Summer of Code.

JabRef’s development strategy

•

•

•

•

•

Continuous integration

Branches

How JabRef acquires contributors

•

•

The main roadmap for JabRef 4.x was to modernize the UI, make the installation easier and

reduce the number of opened issues.

JabRef at the beginning of 2016 had a few issues:

Most of the code is untested, non-documented, and contains a lot of bugs and issues.

During the lifetime of JabRef, a lot of features, UI elements and preferences have been

added. All of them are loosely wired together in the UI, but the UI lacks consistency and

structure.

This makes working on JabRef interesting as in every part of the program, one can improve

something. :smiley:

JabRef 3.x is the effort to try to fix a lot of these issues. Much has been achieved, but much is

still open.

We currently use two approaches: a) rewrite and put under test to improve quality and fix

bugs, b) increase code quality. This leads to pull requests being reviewed by two JabRef

developers to ensure i) code quality, ii) fit within the JabRef architecture, iii) high test

coverage.

Code quality includes using latest Java features, but also readability.

Historical notes

JabRef 4.x

JabRef 3.x

•

•

•

Developer Documentation

Getting into the code / Set up a local workspace / Advanced: Eclipse as IDE

For advanced users, Eclipse (2023-03 or newer) is also possible. On Ubuntu Linux, you can

follow the documentation from the Ubuntu Community or the step-by-step guideline from

Krizna to install Eclipse. On Windows, download it from www.eclipse.org and run the installer.

For Eclipse, a working Java (Development Kit) 20 installation is required. In the case of IntelliJ,

this will be downloaded inside the IDE (if you follow the steps below).

In the command line (terminal in Linux, cmd in Windows) run javac -version and make sure

that the reported version is Java 20 (e.g., javac 20). If javac is not found or a wrong version is

reported, check your PATH environment variable, your JAVA_HOME environment variable or install

the most recent JDK. Please head to https://adoptium.net/de/temurin/releases to download JDK

20.

Always make sure your Eclipse installation us up to date.

Advanced: Eclipse as IDE

Run ./gradlew run to generate all resources and to check if JabRef runs.

The JabRef GUI should finally appear.

This step is only required once.

The directory src-gen is now filled.

1

•

•

•

Run ./gradlew eclipse

This must always be executed, when there are new upstream changes.

2

•

Open or import the existing project in Eclipse as Java project.

Remark: Importing it as gradle project will not work correctly.

Refresh the project in Eclipse

3

•

•

Create a run/debug configuration for the main class org.jabref.Launcher and/or for

org.jabref.gui.JabRefMain (both can be used equivalently)

Remark: The run/debug configuration needs to be added by right-clicking the class (e.g.

Launcher or JabRefMain) otherwise it will not work.

4

•

In the tab “Arguments” of the run/debug configuration, enter the following runtime VM

arguments:

In the tab “Dependencies” of the run/debug configuration tick the checkbox “Exclude

test code”

•

 --add-exports javafx.controls/com.sun.javafx.scene.control=org.jabref

 --add-exports org.controlsfx.controls/impl.org.controlsfx.skin=org.jabref

 --add-exports javafx.graphics/com.sun.javafx.scene=org.controlsfx.controls

 --add-opens javafx.graphics/javafx.scene=org.controlsfx.controls

 --add-exports javafx.graphics/com.sun.javafx.scene.traversal=org.controlsfx.controls

 --add-exports javafx.graphics/com.sun.javafx.css=org.controlsfx.controls

 --add-exports javafx.controls/com.sun.javafx.scene.control.behavior=org.controlsfx.controls

 --add-exports javafx.controls/com.sun.javafx.scene.control=org.controlsfx.controls

 --add-exports javafx.controls/com.sun.javafx.scene.control.inputmap=org.controlsfx.controls

 --add-exports javafx.base/com.sun.javafx.event=org.controlsfx.controls

 --add-exports javafx.base/com.sun.javafx.collections=org.controlsfx.controls

 --add-exports javafx.base/com.sun.javafx.runtime=org.controlsfx.controls

 --add-exports javafx.web/com.sun.webkit=org.controlsfx.controls

 --add-exports javafx.graphics/com.sun.javafx.css=org.controlsfx.controls

 --patch-module org.jabref=build/resources/main

•

To run the LocalizationConsistencyTest you need to add some extra module information: Right-

click on the file -> “Run/Debug as JUnit test”. Go to the Run/debug configuration created for

that file and in the arguments tab under VM-configurations add:

Optional: Install the e(fx)clipse plugin from the Eclipse marketplace: 1. Help -> Eclipse

Marketplace… -> Search tab 2. Enter “e(fx)clipse” in the search dialogue 3. Click “Go” 4.

Click “Install” button next to the plugin 5. Click “Finish”

5

Now you can build and run/debug the application by either using Launcher or JabRefMain . This

is the recommended way, since the application starts quite fast.

6

Localization Test Configuration (Eclipse)

--add-exports javafx.graphics/com.sun.javafx.application=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.stage=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.stage=com.jfoenix

Developer Documentation

Getting into the code / Set up a local workspace / Step 1: Get the code into IntelliJ

Start IntelliJ.

IntelliJ shows the following window:

Figure: IntelliJ Start Window

Click on “Open”

Choose build.gradle in the root of the jabref source folder:

Step 1: Get the code into IntelliJ

Figure: Choose build.gradle in the “Open Project or File” dialog

After pressing “OK”, IntelliJ asks how that file should be opened. Answer: “Open as Project”

Figure: Choose “Open as Project” in the Open Project dialog

Then, trust the project:

Figure: Choose “Trust Project” in the “Trust and Open Project” dialog

Ensure that committing via IntelliJ works

IntelliJ offers committing using the UI. Press Alt+0 to open the commit dialog.

Unfortunately, IntelliJ has no support for ignored sub modules [IDEA-285237]. Fortunately,

there is a workaround:

Go to File > Settings… > Version Control > Directory Mappings.

Note: In some MacBooks, Settings can be found at the “IntelliJ” button of the app menu

instead of at “File”.

Currently, it looks as follows:

Figure: Directory Mappings unmodified

You need to tell IntelliJ to ignore the submodules buildres\abbrv.jabref.org , src\main\resources\csl-

locales , and src\main\resources\csl-styles . Select all three (holding the Ctrl key). Then press the

red minus button on top.

This will make these directories “Unregistered roots:”, which is fine.

Figure: Directory Mappings having three unregistered roots

Open a “git bash”. On Windows, navigate to C:\git-repositories\JabRef . Open the context menu

of the file explorer (using the right mouse button), choose “Open Git Bash here”.

Execute following command:

If you do not see the context menu, re-install git following the steps given at StackOverflow.

Ensure that committing with other tools work

git update-index --assume-unchanged buildres/abbrv.jabref.org src/main/resources/csl-styles src/main/res

Developer Documentation

Getting into the code / Set up a local workspace / Step 2: Set up the build system: JDK and Gradle

Ensure you have a Java 23 SDK configured by navigating to File > Project Structure… >

Platform Settings > SDKs.

Note: In some MacBooks, Project Structure can be found at the “IntelliJ” button of the app

menu instead of at “File”.

Figure: JDKs 11, 14, and 15 shown in available SDKs. JDK 23 is missing.

Step 2: Set up the build system: JDK and

Gradle

Ensure that JDK 23 is available to IntelliJ

If there is another JDK than JDK 23 selected, click on the plus button and choose “Download

JDK…”

Figure: Download JDK…

Select JDK version 23 and then Eclipse Temurin.

Figure: Example for JDK 23 - Choose Eclipse Temurin

After clicking “Download”, IntelliJ installs Eclipse Temurin:

Figure: IntelliJ installs Eclipse Temurin

Navigate to Project Settings > Project and ensure that the projects’ SDK is Java 23.

Figure: Project SDK is pinned to the downloaded SDK (showing JDK 23 as example)

Click “OK” to store the changes.

Navigate to File > Settings… > Build, Execution, Deployment > Build Tools > Gradle

and select the “Project SDK” as the Gradle JVM at the bottom. If that does not exist, just select

JDK 23.

Ensure correct JDK setting for Gradle

Figure: Gradle JVM is project SDK (showing

To prepare IntelliJ’s build system additional steps are required:

Navigate to Build, Execution, Deployment > Compiler > Java Compiler, and under

“Override compiler parameters per-module”, click add ([+]) and choose JabRef.main :

Enable compilation by IntelliJ

Figure: Choose JabRef.main

Copy following text into your clipboard:

Then double click inside the cell “Compilation options”. Press Ctrl+A to mark all text. Press

Ctrl+V to paste all text. Press Enter to have the value really stored. Otherwise, it seems like

the setting is stored, but it is not there if you reopen this preference dialog.

--add-exports=javafx.controls/com.sun.javafx.scene.control=org.jabref

--add-exports=org.controlsfx.controls/impl.org.controlsfx.skin=org.jabref

--add-reads org.jabref=org.apache.commons.csv

--add-reads org.jabref=org.fxmisc.flowless

--add-reads org.jabref=langchain4j.core

--add-reads org.jabref=langchain4j.open.ai

Note: If you use the expand arrow, you need to press Shift+Enter to close the expansion and

then Enter to commit the value.

Figure: Resulting settings for module JabRef.main

Then click on “Apply” to store the setting.

Note: If this step is omitted, you will get: java: package com.sun.javafx.scene.control is not visible

(package com.sun.javafx.scene.control is declared in module javafx.controls, which does not export it to

module org.jabref) .

Enable annotation processors by navigating to Build, Execution, Deployment > Compiler

> Annotation processors and check “Enable annotation processing”

Enable annotation processors

Figure: Enabled annotation processing

NOTE

Ensuring JabRef builds with Gradle should always be the first step because, e.g. it

generates additional sources that are required for compiling the code.

Open the Gradle Tool Window with the small button that can usually be found on the right side

of IDEA or navigate to View > Tool Windows > Gradle. In the Gradle Tool Window, press the

“Reload All Gradle Projects” button to ensure that all settings are up-to-date with the setting

changes.

Using Gradle from within IntelliJ IDEA

Figure: Reload of Gradle project

After that, you can use the Gradle Tool Window to build all parts of JabRef and run it. To do so,

expand the JabRef project in the Gradle Tool Window and navigate to Tasks. From there, you

can build and run JabRef by double-clicking JabRef > Tasks > application > run.

Figure: JabRef > Tasks > application > run

The Gradle run window opens, shows compilation and then the output of JabRef. The spinner

will run as long as JabRef is open.

Figure: Gradle run Window

You can close JabRef again.

After that a new entry called “jabref [run]” appears in the run configurations. Now you can

also select “jabref [run]” and either run or debug the application from within IntelliJ.

NOTE

You can run any other development task similarly.

In File > Settings… > Build, Execution, Deployment > Build Tools > Gradle the setting

“Run tests using:” is set to “IntelliJ IDEA”.

Using IntelliJ’s internal build system for tests

Figure: IntelliJ setting: Run tests using IntelliJ

NOTE

In case there are difficulties later, this is the place to switch back to gradle.

Click “OK” to close the preference dialog.

In the menu bar, select Build > Rebuild project.

IntelliJ now compiles JabRef. This should happen without any error.

Now you can use IntelliJ IDEA’s internal build system by using Build > Build Project.

To run an example test from IntelliJ, we let IntelliJ create a launch configuration:

Locate the class BibEntryTest : Press Ctrl+N. Then, the “Search for classes dialog” pops up.

Enter bibentrytest . Now, BibEntryTest should appear first:

Final build system checks

Figure: IntelliJ search for class “BibEntryTest”

Press Enter to jump to that class.

Hover on the green play button on defaultConstructor :

Figure: However on green play button

Then, click on it. A popup menu opens. Choose the first entry “Run testDefaultConstructor”

and click on it.

Figure: Run testDefaultConstructor

Then, the single test starts.

You also have an entry in the Launch configurations to directly launch the test. You can also

click on the debug symbol next to it to enable stopping at breakpoints.

Figure: Launch menu contains BibEntry test case

The tests are green after the run. You can also use the play button there to re-execute the

tests. A right-click on “BibEntryTests” enables the debugger to start.

Figure: Run window for the BibEntry test case

Developer Documentation

Getting into the code / Set up a local workspace / Step 3: Set up JabRef’s code style

Contributions to JabRef’s source code need to have a code formatting that is consistent with

existing source code. For that purpose, JabRef provides code-style and check-style definitions.

Install the CheckStyle-IDEA plugin, it can be found via the plug-in repository: Navigate to File

> Settings… > Plugins”. On the top, click on “Marketplace”. Then, search for “Checkstyle”.

Click on “Install” choose “CheckStyle-IDEA”.

Note: In some MacBooks, Settings can be found at the “IntelliJ” button of the app menu

instead of at “File”.

Figure: Install CheckStyle

After clicking, IntelliJ asks for confirmation:

Figure: Third Party Plugin Privacy Notice

If you agree, click on “Agree” and you can continue.

Afterwards, use the “Restart IDE” button to restart IntelliJ.

Step 3: Set up JabRef’s code style

Figure: IntelliJ restart IDE

Click on “Restart” to finally restart.

Wait for IntelliJ coming up again.

Go to File > Settings… > Editor > Code Style

Click on the settings wheel (next to the scheme chooser), then click “Import Scheme >”, then

click “IntelliJ IDEA code style XML”

Figure: Location of “Import Scheme > IntelliJ IDEA code style XML”

You have to browse for the directory config in JabRef’s code. There is an IntelliJ Code Style.xml .

Figure: Browsing for config/IntelliJ Code Style.xml

Click “OK”.

At following dialog is “Import Scheme”. Click there “OK”, too.

Figure: Import to JabRef

Click on “Apply” to store the preferences.

Now, put the checkstyle configuration file is in place:

Go to File > Settings… > Tools > Checkstyle > Configuration File

Trigger the import dialog of a CheckStyle style by clicking the [+] button:

Put JabRef’s checkstyle configuration in place

Figure: Trigger the rule import dialog

Then:

Put “JabRef” as description.

Browse for config/checkstyle/checkstyle.xml

Tick “Store relative to project location”

Click “Next”

•

•

•

•

Figure: Filled Rule Import Dialog

Click on “Finish”

Activate the CheckStyle configuration file by ticking it in the list

Figure: JabRef’s checkstyle config is activated

Ensure that the latest CheckStyle version is selected (10.21.0 or higher). Also, set the “Scan

Scope” to “Only Java sources (including tests)”.

Figure: Checkstyle is the highest version - and tests are also scanned

Save settings by clicking “Apply” and then “OK”

In the lower part of IntelliJ’s window, click on “Checkstyle”. In “Rules”, change to “JabRef”.

Then, you can run a check on all modified files.

Run checkstyle

Figure: JabRef’s style is active - and we are ready to run a check on all modified files

To have auto format working properly in the context of JavaDoc and line wrapping, “Wrap at

right margin” has to be disabled. Details are found in IntelliJ issue 240517.

Go to File > Settings… > Editor > Code Style > Java > JavaDoc.

At “Other”, disable “Wrap at right margin”

Have auto format working properly in JavaDoc

Figure: ”Wrap at right margin” disabled

To enable “magic” creation and auto cleanup of imports, go to File > Settings… > Editor >

General > Auto Import. There, enable both “Add unambiguous imports on the fly” and

“Optimize imports on the fly” (Source: JetBrains help).

Figure: Auto import enabled

Press “OK”.

Enable proper import cleanup

Go to File > Settings… > Editor > General > Code Folding. At section “General”, disable

“File header” and “Imports”. At section “Java”, disable “One-line methods”.

Figure: Code foldings disabled

Press “OK”.

SUMMARY

Now you have configured IntelliJ completely. You can run the main application using Gradle

and the test cases using IntelliJ. The code formatting rules are imported - and the most

common styling issue at imports is automatically resolved by IntelliJ. Finally, you have

Checkstyle running locally so that you can check for styling errors before submitting the

pull request.

Got it running? GREAT! You are ready to lurk the code and contribute to JabRef. Please make

sure to also read our contribution guide.

Disable too advanced code folding

Final comments

Developer Documentation

Getting into the code / Set up a local workspace / Advanced: Build and run using IntelliJ IDEA

In “Step 2: Setup the build system: JDK and Gradle”, IntelliJ was configured to use Gradle as

tool for launching JabRef. It is also possible to use IntelliJ’s internal build and run system to

launch JabRef. Due to IDEA-119280, it is a bit more work.

Figure: IntelliJ search for class “Launcher”

Advanced: Build and run using IntelliJ

IDEA

Navigate to File > Settings… > Build, Execution, Deployment > Build Tools >

Gradle.

1

Change the setting “Build and run using:” to “IntelliJ IDEA”.2

Navigate to File > Settings… > Build, Execution, Deployment > Compiler.3

Uncheck Clear output directory on rebuild .4

Navigate to File > Settings… > Build, Execution, Deployment > Compiler > Java

Compiler.

5

Uncheck --Use 'release' option for cross-compilation .6

Click “OK” to store the preferences and close the dialog.7

Build > Build Project (Ctrl+F9)8

Open the project view (Alt+1, on macOS cmd+1)9

Copy all build resources to the folder of the build classes10

Navigate to the folder build/resources/maina

Right click -> “Open In” -> “Explorer (Finder on macOS)”b

Navigate into directory “main”c

Select the folder out/production/classesd

Right click -> “Open In” -> “Explorer (Finder on macOS)”e

Navigate into directory “classes”f

Now you have two Explorer windows opened. Copy all files and directories from the first

one to the second one.

g

Locate the class Launcher (e.g., by ctrl+N and then typing Launcher). Press Enter to jump to

that class.

11

Figure: However on green play

Figure: Run JabRef via launcher

Click on the green play button next to the main method to create a Launch configuration.

IntelliJ will fail in launching.

1

On the top right of the IntelliJ window, next to the newly created launch configuration, click

on the drop down

1

Click on “Edit Configurations…”2

On the right, click on “Modify options”3

Ensure that “Use classpath of module” is checked4

Select “Add VM options”5

In the newly appearing field for VM options, insert:6

 --add-exports=javafx.controls/com.sun.javafx.scene.control=org.jabref

 --add-opens=org.controlsfx.controls/org.controlsfx.control.textfield=org.jabref

 --add-exports=org.controlsfx.controls/impl.org.controlsfx.skin=org.jabref

 --add-exports javafx.controls/com.sun.javafx.scene.control=org.jabref

 --add-exports org.controlsfx.controls/impl.org.controlsfx.skin=org.jabref

 --add-exports javafx.graphics/com.sun.javafx.scene=org.controlsfx.controls

 --add-opens javafx.graphics/javafx.scene=org.controlsfx.controls

 --add-exports javafx.graphics/com.sun.javafx.scene.traversal=org.controlsfx.controls

 --add-exports javafx.graphics/com.sun.javafx.css=org.controlsfx.controls

 --add-exports javafx.controls/com.sun.javafx.scene.control.behavior=org.controlsfx.controls

 --add-exports javafx.controls/com.sun.javafx.scene.control=org.controlsfx.controls

 --add-opens=javafx.controls/javafx.scene.control.skin=org.controlsfx.controls

 --add-exports javafx.controls/com.sun.javafx.scene.control.inputmap=org.controlsfx.controls

 --add-exports javafx.base/com.sun.javafx.event=org.controlsfx.controls

 --add-exports javafx.base/com.sun.javafx.collections=org.controlsfx.controls

 --add-exports javafx.base/com.sun.javafx.runtime=org.controlsfx.controls

 --add-exports javafx.web/com.sun.webkit=org.controlsfx.controls

 --add-exports javafx.graphics/com.sun.javafx.css=org.controlsfx.controls

 --add-reads org.jabref=org.fxmisc.flowless

 --add-reads org.jabref=org.apache.commons.csv

Click “Apply”7

Click “Run”. You can also click on the debug symbol next to it to enable stopping at

breakpoints.

Figure: Launch menu contains “Launcher”

8

Developer Documentation

Getting into the code / Set up a local workspace / Pre Condition 1: GitHub Account

If you do not yet have a GitHub account, please create one.

Proposals for account names:

Login similar to your university account. Example: koppor

Use your last name prefixed by the first letter of your first name. Example: okopp

Use firstname.lastname . Example: oliver.kopp

You can hide your email address by following the recommendations at

https://saraford.net/2017/02/19/how-to-hide-your-email-address-in-your-git-commits-but-still-

get-contributions-to-show-up-on-your-github-profile-050/.

Most developers, though, do not hide their email address. They use one which may get public.

Mostly, they create a new email account for development only. That account then be used for

development mailing lists, mail exchange with other developers, etc.

Examples:

Same login as in GitHub (see above). Example: koppor@gmail.com

“ it ” in the name. Example: kopp.it@gmail.com

Use the university login. Example: st342435@stud.uni-stuttgart.de

Pre Condition 1: GitHub Account

•

•

•

•

•

•

Developer Documentation

Getting into the code / Set up a local workspace / Pre Condition 2: Required Software

It is strongly recommended that you have git installed.

On Debian-based distros: sudo apt-get install git

On Windows: Download the installer and install it. Using chocolatey, you can run choco

install git.install -y --params "/GitAndUnixToolsOnPath /WindowsTerminal to a) install git and b)

have Linux commands such as grep available in your PATH .

Official installation instructions

We highly encourdage IntelliJ IDEA, because all other IDEs work less good. Especially using

VS.Code has issues.

IntelliJ’s Community Edition works well. Most contributors use the Ultimate Edition, because

they are students getting that edition for free.

We collected some other tooling recommendations. We invite you to read on at our tool

recommendations.

Pre Condition 2: Required Software

git

•

•

•

Installed IDE

Other Tooling

Developer Documentation

Getting into the code / Set up a local workspace / Pre Condition 3: Code on the local machine

This section explains how you get the JabRef code onto your machine in a form allowing you to

make contributions.

A longer explanation is available at https://help.github.com/en/articles/fork-a-repo.

In a command line, navigate to the folder where you want to place the source code (parent

folder of jabref). To prevent issues along the way, it is strongly recommend choosing a path

that does not contain any special (non-ASCII or whitespace) characters. In the following, we

will use c:\git-repositories as base folder:

cd \

mkdir git-repositories

cd git-repositories

git clone --recurse-submodules https://github.com/JabRef/jabref.git JabRef

cd JabRef

git remote rename origin upstream

git remote add origin https://github.com/YOUR_USERNAME/jabref.git

git fetch --all

git branch --set-upstream-to=origin/main main

IMPORTANT

--recurse-submodules is necessary to have the required files available to JabRef. (Background:

It concerns the files from citation-style-language/styles and more).

Note that putting the repo JabRef directly on C:\ or any other drive letter on Windows

causes compile errors (negative example: C:\jabref).

Pre Condition 3: Code on the local

machine

Fork JabRef into your GitHub account

Log into your GitHub account1

Go to https://github.com/JabRef/jabref2

Create a fork by clicking at fork button on the right top corner3

A fork repository will be created under your account https://github.com/YOUR_USERNAME/jabref .4

Clone your forked repository on your local machine

Please really ensure that you pass JabRef as parameter. Otherwise, you will get

java.lang.IllegalStateException: Module entity with name: jabref should be available . See IDEA-

317606 for details.

BACKGROUND

Initial cloning might be very slow (27.00 KiB/s).

To prevent this, first the upstream repository is cloned. This repository seems to live in the

caches of GitHub.

Now, you have two remote repositories, where origin is yours and upstream is the one of

the JabRef organization.

You can see it with git remote -v :

c:\git-repositories\jabref> git remote -v

origin https://github.com/YOURUSERNAME/jabref.git (fetch)

origin https://github.com/YOURUSERNAME/jabref.git (push)

upstream https://github.com/jabref/jabref.git (fetch)

upstream https://github.com/jabref/jabref.git (push)

Developer Documentation

Getting into the code / Set up a local workspace / Trouble shooting

You need to remove these directories from the “Directory Mappings” in IntelliJ. Look for the

setting in preferences. A long how-to is contained in Step 1: Get the code into IntelliJ.

In rare cases you might encounter problems due to out-dated automatically generated source

files. Running gradle task “clean” (Command line: ./gradlew clean) deletes these old copies. Do

not forget to run at least ./gradlew assemble or ./gradlew eclipse afterwards to regenerate the

source files.

Following error message appears:

This can include different modules.

Trouble shooting

Changes in src/main/resources/csl-styles are shown

Issues with buildSrc

Open the context menu of buildSrc .1

Select “Load/Unload modules”.2

Unload jabRef.buildSrc .3

Issues with generated source files

Issue with “Module org.jsoup” not found, required by org.jabref

Error occurred during initialization of boot layer

java.lang.module.FindException: Module org.jsoup not found, required by org.jabref

Go to File -> Invalidate caches…1

Check “Clear file system cache and Local History”.2

Check “Clear VCS Log caches and indexes”.3

Uncheck the others.4

Click on “Invalidate and Restart”.5

After IntelliJ restarted, you have to do the “buildSrc”, “Log4JAppender”, and “src-gen” steps

again.

6

There might be problems with building if you have OpenJFX libraries in local maven repository,

resulting in errors like this:

As a workaround, you can remove all local OpenJFX artifacts by deleting the whole OpenJFX

folder from specified location.

In case of a NPE at Files.copy at

org.jabref.logic.journals.JournalAbbreviationLoader.loadRepository(JournalAbbreviationLoader.java:30) ~

[classes/:?] , invalidate caches and restart IntelliJ. Then, Build -> Rebuild Project.

If that does not help:

An indication that JAVA_HOME is not correctly set or no JDK 21 is installed in the IDE is following

error message:

Another indication is following output

Issues with OpenJFX libraries in local maven repository

 > Could not find javafx-fxml-20-mac.jar (org.openjfx:javafx-fxml:20).

 Searched in the following locations:

 file:<your local maven repository path>/repository/org/openjfx/javafx-fxml/20/javafx-fxml-20-ma

Issues with JournalAbbreviationLoader

Save/Commit all your work1

Close IntelliJ2

Delete all non-versioned items: git clean -xdf . This really destroys data3

Execute ./gradlew run4

Start IntelliJ and try again.5

Java installation

compileJava FAILED

FAILURE: Build failed with an exception.

* What went wrong:

Execution failed for task ':compileJava'.

> java.lang.ExceptionInInitializerError (no error message)

java.lang.UnsupportedClassVersionError: org/javamodularity/moduleplugin/ModuleSystemPlugin has been comp

This is likely caused by improper integration of your OS or Desktop Environment with your

password prompting program or password manager. Ensure that these are working properly,

then restart your machine and attempt to run the program.

In an ideal scenario, a password prompt should appear when the program starts, provided the

keyring your OS uses has not already been unlocked. However, the implementation details

vary depending on the operating system, which makes troubleshooting more complex.

For Windows and macOS users, specific configurations may differ based on the password

management tools and settings used, so ensure your OS’s password management system is

properly set up and functioning.

For Linux users, ensure that your xdg-desktop-portal settings refer to active and valid portal

implementations installed on your system. However, there might be other factors involved, so

additional research or guidance specific to your distribution may be necessary.

For reference, see the discussion at issue #11766.

Attempts to open preferences panel freezes application

Developer Documentation

Getting into the code / Set up a local workspace / Advanced: VS Code as IDE

We are working on supporting VS Code for development. There is basic support, but important

things such as our code conventions are not in place. Thus, use at your own risk.

Quick howto:

Alternative to steps 9 to 10:

In case interaction using the web browser is too slow, you can use a VNC connection:

Advanced: VS Code as IDE

Start VS Code in the JabRef directory: code . .1

There will be a poup asking “Reopen in Container”. Click on that link.2

VS Code restarts. Wait about 3 minutes until the dev container is build. You can click on

“Starting Dev Container (show log)” to see the progress.

3

Afterwards, the Java project is imported. You can open the log (Click on “Check details”). Do

that.

4

The terminal (tab “Java Build Status”) will show some project synchronization and hang at

80% [797/1000] . It keeps hanging at Importing root project: 80% Refreshing '/jabref' . Just wait.

Then it hangs at Synchronizing Gradle build at /workspaces/jabref: 80% . Just wait. Then it takes

long for Refreshing workspace: . Just wait. Note: If you had the project opened in IntelliJ

before, this might cause issues (as outlined at

https://issuetracker.google.com/issues/255903901?pli=1). Close everything, ensure that

you committed your changes (if any), then execute git clean -xdf to wipe out all changes

and created files - and start from step 1 again.

5

On the left, you will see a gradle button.6

Click on the gradle button and open JabRef -> Tasks -> application.7

Double click on run.8

In the terminal, a new tab “run” opens.9

On your desktop machine, open http://127.0.0.1:6080/ in a web browser. Do not open the

proposed port 6050 . This is JabRef’s remote command port.

10

Use vscode as password.11

You will see an opened JabRef.12

Install VNC Connect1

Use vscode as password2

Trouble shooting

In case there are reading errors on the file system, the docker container probably is out of

order. Close VS Code. Stop the docker container, kill docker process in the Task Manager (if

necessary). Start docker again. Start VS Code again.

We use VS Code’s Dev Containers feature. Thereby, we use desktop-lite to enable viewing the

JabRef app.

Background

Developer Documentation

Getting into the code / Set up a local workspace

IMPORTANT

These steps are very important. They allow you to focus on the content and ensure that

the code formatting always goes well.

This guide explains how to set up your environment for development of JabRef. It includes

information about prerequisites, configuring your IDE, and running JabRef locally to verify your

setup. Please follow the steps one-by-one.

First, we work on prerequisites (software, account, code fork) you need to get started to

develop JabRef. Then, we work on a proper IDE setup.

Pre Condition 1: GitHub Account

Pre Condition 2: Required Software

Pre Condition 3: Code on the local machine

Step 1: Get the code into IntelliJ

Step 2: Set up the build system: JDK and Gradle

Step 3: Set up JabRef’s code style

Advanced: Build and run using IntelliJ IDEA

Advanced: Eclipse as IDE

Advanced: VS Code as IDE

Trouble shooting

Set up a local workspace

TABLE OF CONTENTS

•

•

•

•

•

•

•

•

•

•

Developer Documentation

Getting into the code / High-level documentation

This page describes relevant information about the code structure of JabRef precisely and

succinctly. Closer-to-code documentation is available at Code HowTos.

We have been successfully transitioning from a spaghetti to a more structured architecture

with the model in the center, and the logic as an intermediate layer towards the gui which is

the outer shell. There are additional utility packages for preferences and the cli . The

dependencies are only directed towards the center. We have JUnit tests to detect violations of

the most crucial dependencies (between logic , model , and gui), and the build will fail

automatically in these cases.

The model represents the most important data structures (BibDatases , BibEntries , Events , and

related aspects) and has only a little bit of logic attached. The logic is responsible for

reading/writing/importing/exporting and manipulating the model , and it is structured often as

an API the gui can call and use. Only the gui knows the user and their preferences and can

interact with them to help them solving tasks. For each layer, we form packages according to

their responsibility, i.e., vertical structuring. The model should have no dependencies to other

classes of JabRef and the logic should only depend on model classes. The cli package bundles

classes that are responsible for JabRef’s command line interface. The preferences package

represents all information customizable by a user for her personal needs.

We use an event bus to publish events from the model to the other layers. This allows us to

keep the architecture but still react upon changes within the core in the outer layers. Note that

we are currently switching to JavaFX’s observables, as this concepts seems as we aim for a

stronger coupling to the data producers.

Permitted dependencies in our architecture are:

gui --> logic --> model

gui ------------> model

gui ------------> preferences

gui ------------> cli

gui ------------> global classes

logic ------------> model

global classes ------------> everywhere

High-level documentation

Package Structure

cli ------------> model

cli ------------> logic

cli ------------> global classes

cli ------------> preferences

All packages and classes which are currently not part of these packages (we are still in the

process of structuring) are considered as gui classes from a dependency stand of view.

Both GUI and CLI are started via the JabRefMain which will in turn call JabRef which then decides

whether the GUI (JabRefFrame) or the CLI (JabRefCLI and a lot of code in JabRef) will be started.

The JabRefFrame represents the Window which contains a SidePane on the left used for the

fetchers/groups Each tab is a BasePanel which has a SearchBar at the top, a MainTable at the

center and a PreviewPanel or an EntryEditor at the bottom. Any right click on the MainTable is

handled by the RightClickMenu . Each BasePanel holds a BibDatabaseContext consisting of a

BibDatabase and the MetaData , which are the only relevant data of the currently shown database.

A BibDatabase has a list of BibEntries . Each BibEntry has an ID, a citation key and a key/value

store for the fields with their values. Interpreted data (such as the type or the file field) is

stored in the TypedBibentry type. The user can change the JabRefPreferences through the

PreferencesDialog .

Most Important Classes and their Relation

Developer Documentation

JabRef’s development strategy

Set up a local workspace

High-level documentation

Getting into the code

TABLE OF CONTENTS

•

•

•

Developer Documentation

Requirements / AI

req~ai.chat.new-message-based-on-previous~1

To enable simple editing and resending of previous messages, Cursor Up should show last

message. This should only happen if the current text field is empty.

Needs: impl

AI

User Interface

Chatting with AI

Developer Documentation

This part of the documentation collects requirements using OpenFastTrace.

One writes directly below a Markdown heading a requirement identifier.

Example:

It is important that there is no empty line directly after the heading.

One needs to add <!-- markdownlint-disable-file MD022 --> to the end of the file, because the ID of

the requirement needs to follow the heading directly.

Then, one writes down at the requirement. Directly at the end, one writes that it requires an

implementation:

One can also state that there should be detailed design document (dsn). However, typically in

JabRef, we go from the requirement directly to the implementation.

Then, at the implementation, a comment is added this implementation is covered:

When executing the gradle task traceRequirements , build/tracing.txt is generated. In case of a

tracing error, one can inspect this file to see which requirements were not covered.

User manual of OpenFastTrace

We cannot copy and paste real examples here, because of openfasttrace#280.

Requirements

Specifying requirements

Example

`req~ai.example~1`

Linking implementations

Needs: impl

// [impl->req~ai.example~1]

More Information

•

•

AI

TABLE OF CONTENTS

•

Developer Documentation

By using JabRef as training object in exercises and labs, students can level-up their coding and

project management skills. When taking part in JabRef development, one will learn modern

Java coding practices, how code reviews work and how to properly address reviewing

feedback.

High-quality student education due to real-world tooling and real-world code base

Sustainability of student works: No more thrown-away solved exercises: They now are

incorporated in a real-world product

No need to provision infra structure

Visibility of your research groups

No need to think about basic software engineering exercises anymore: JabRef cooperation

partners have them.

JabRef and Software Engineering Training

Why university instructors should cooperate with us?

•

•

•

•

•

How to integrate JabRef in your class

Choose task from the board Candidates for university projects. There, new functionality is

categorized in small, medium, and large effort. Moreover, categorization on the main focus

(UI, logic, or both), implementation effort, testing effort, and “issue understanding effort”.

The latter category is important, because some issues are “quick wins” and others need

thorough thinking.

In general, all issues of JabRef are free to take. Be aware that the difficulty of bugs and

feature vary. For the brave, the Bug Board or the Feature Board provide other issue

sources. Especially for Master students, these are excellent boards to find issues that train

maintenance knowledge (which is essential for industry work). Finally, there is a collection

of good first issues, if you search for something to start guiding you though a focused

aspect of JabRef’s code.

1

Get in touch with the JabRef team to reserve issues for your student group and possibly to

discuss details. We offer email, skype, gitter.im, discord. Get in touch with @koppor to find

the right channel and to start forming the success of your course.

2

Schedule tasks with students3

Students implement code4

Students review other student’s code (recommended: students of a previous year’s project

review current year’s project code)

5

For a near-to-perfect preparation and effect of the course, we ask you to get in touch with us

four weeks in advance. Then, the JabRef team can a) learn about the starting skill level of the

students, b) the aimed skill level at the end of the course, c) the amount of time the students

are given to learn about and contribute to JabRef, d) check the Candidates for university

projects for appropriate tasks (and fill it as needed), e) recommend appropriate features.

It is also possible to just direct students to our Contribution Guide. The learning effect may be

lower as the time of the students has to be spent to a) learn about JabRef and b) select an

appropriate issue.

Since a huge fraction of software costs is spent on software maintenance, adding new features

also educates in that aspect: perfective maintenance 2 is trained. When fixing bugs, corrective

maintenance 2 is trained.

There is no special process for student contributions. We want to discuss it nevertheless to

increase awareness of the time required from starting the contribution until the inclusion in a

release of JabRef.

The process for accepting contributions is as below. The syntax is BPMN modeled using

bpmn.io.

Students address review feedback6

Students submit pull request7

Code reviews by JabRef maintainers8

Students address feedback and learn more about good coding practices by incorporating

feedback

9

Students update their pull request10

Pull request is merged11

Process for contributions

C
on

tri
bu

to
r

Create
Contribution

Submit
Contribution

Update Code Comment Pull
Request

Ja
bR

ef
 T

ea
m Fr

is
t D

ev
el

op
er

S
ec

on
d

D
ev

el
op

er

Provide
Feedback

Review Code Provide
Feedback

Review Code Request
Changes

Merge Pull
Reuquest

Quality OK

Quality does not
meet JabRef's
requirements

Quality does not
meet JabRef's
requirements

Pull Request
incoming

Quality OK`?

Quality OK?

Quality OK

Everything OK

Changes
Requested

In short, the contribution is reviewed by two JabRef developers. Typically, they have

constructive feedback on their contribution. This means, that the contributors get comments

on their contribution enabling them to level-up their coding skill. Incorporating improvements

takes time, too. The benefit is two-fold: a) contributors improve their coding skills and b)

JabRef’s code quality improves. All in all, we ask to respect the aims of the JabRef team and to

reserve time to incorporate the reviewer’s comments.

GitHub describes that in their page Understanding the GitHub flow:

Process for Java newcomers

Newcomers contributing in the context of a university teaching experience are invited to

follow the process described above. In case the capacity of the instructing university allows,

we propose a three-step approach. First, the contributors prepare their contribution as usual.

Then, they submit the pull request to a separate repository. There, the instructor reviews the

pull request and provides feedback. This happens in a loop until the instructor shows the

green light. Then, the pull request can be submitted to the main JabRef repository. This will

help to reduce the load on the JabRef team and improve the quality of the initial pull request.

C
on

tri
bu

to
r

Prepare
Submission

Submit
and Refine

Contribution

Ja
bR

ef
 T

ea
m

Check, Support,
and Merge

In
st

ru
ct

or Review and
Support

Submission

In case your course is missing, feel free to add it.

Course: Open Source Software Development, 2018, 2019

In this course, students will be introduced to the processes and tools specific to Open

Source Software development, and they will analyze existing projects to understand the

architecture and processes of these projects. Besides, students will attempt to contribute

source code to a large existing Open Source Software project.

Course: BSc Computer Science Individual Project, 2022/2023

Students experience the procedure of finding and fixing small and medium issues in an

open source project.

Course CS499 - Open Source Software Development, 2018

Students experience the process of getting involved in an Open Source project by engaging

with a real project. Their goal is to make a “substantial” contribution to a project.

Diversity awareness course by Vandana Singh, 2022

Past courses

English as course language

HARBIN INSTITUTE OF TECHNOLOGY (HIT), CHINA

KING’S COLLEGE LONDON

NORTHERN ARIZONA UNIVERSITY (NAU), USA

UNIVERSITY OF TENNESSEE, KNOXVILLE, USA

Course SENG371: Software Evolution by Roberto A. Bittencourt

Introduces problems and solutions of long-term software maintenance/evolution and large-

scale, long-lived software systems. Topics include software engineering techniques for

programming-in-the-large, programming-in-the-many, legacy software systems, software

architecture, software evolution, software maintenance, reverse engineering, program

understanding, software visualization, advanced issues in object-oriented programming,

design patterns, antipatterns, and client-server computing. Culminates in a team project.

During the course, students work in small groups to solve three assignments, each

assignment handling three JabRef issues. First assignment deals with small bug fixes.

Second assignment handles testing and refactoring. Third assignment handles features or

bug fixes that deal with both the GUI and the business logic.

Course 10915-01: Software Engineering, 2019 to 2023

Lecture Materials: https://github.com/unibas-marcelluethi/software-engineering

Excercise touching JabRef:

General idea: identify a feature missing in JabRef and develop the specification, system

design, and implementation of the feature.

Introduction to JabRef’s code: Exercise 5: Introduction into JabRef code.

Prominent feature implemented: Parse full-text references using Grobid. PR #5614.

Course “Softwarepraktikum” as part of the BSc Informatik, 2012

A group of three students experienced the full software engineering process within one

semester. They worked part-time for the project.

Course Studienprojekt as part of the BSc Software Engineering, 2015/2016

A group of nine students experienced the full software engineering process within one year.

They worked part-time for the project.

Course “Programming and Software Development” as part of the BSc Software Engineering,

2018

One exercise to contribute a minor fix or feature to JabRef. Goal: learn contribution to an

open-source project using git and GitHub.

Course DD2480 Software Engineering Fundamentals, 2020, 2024

UNIVERSITY OF VICTORIA, CANADA

German as course language

UNIVERSITÄT BASEL, SWITZERLAND

•

•

•

•

•

UNIVERSITY OF STUTTGART, GERMANY

Swedish

KTH ROYAL INSTITUTE OF TECHNOLOGY, SWEDEN

Groups of students from three to five persons experienced the whole software engineering

process within a week: From the requirements’ specification to the final pull request.

Course Open Source Software, 2013 to 2016

Students are requested to contribute to an Open Source project to learn about the

maintenance and evolution of software projects. This project is the predecessor of NAU’s

CS499.

O. Kopp et al.: JabRef: BibTeX-based literature management software, TUGboat 44(3) -

explains the motivation and the concept of the curated issues.

“I have learnt more from this single pull request regarding production-ready code than I

ever have from my three years of CS degree.”

JabRef mentioned as one of “Top 8 Open Source GitHub Projects to Level-Up Your Coding”

by CodeGym.

(Please send us your praise if you enjoyed the experience)

[1]: @ayaankazerouni: Developing Procrastination Feedback for Student Software Developers

Portuguese

FEDERAL UNIVERSITY OF TECHNOLOGY, PARANÁ, BRAZIL

Praises and media coverage

•

•

•

Notes

JabRef tries to achieve high code quality. This ultimately leads to improved software

engineering knowledge of contributors. After contributing for JabRef, both coding and

general software engineering skills will have increased. Our development strategy provides

more details.

1

We recommend to start early and constantly, since students working earlier and more often

produce projects that are more correct and completed earlier at the same overall invested

time 1.

2

Be aware that JabRef is run by volunteers. This implies that the development team cannot

ensure to provide feedback on code within hours.

3

Be aware that from the first pull request to the final acceptance the typical time needed is

two weeks.

4

Be aware that JabRef tries to achieve high code quality. This leads to code reviews requiring

actions from the contributors. This also applies for code of students. Read on at our

Development Strategy for more details.

5

References

[2]: Lientz B., Swanson E., 1980: Software Maintenance Management. Addison Wesley,

Reading, MA.

	Contents
	index
	code-howtos–IntelliJ
	code-howtos–bibtex
	code-howtos–code-quality
	code-howtos–custom-svg-icons
	code-howtos–error-handling
	code-howtos–eventbus
	code-howtos–faq
	code-howtos–fetchers
	code-howtos–http-server
	code-howtos–javafx
	code-howtos–jpackage
	code-howtos–localization
	code-howtos–logging
	code-howtos–openoffice–code-reorganization
	code-howtos–openoffice–ooresult-ooerror–ooresult-alternatives
	code-howtos–openoffice–ooresult-ooerror
	code-howtos–openoffice–order-of-appearance
	code-howtos–openoffice–overview
	code-howtos–openoffice–problems
	code-howtos–openoffice
	code-howtos–remote-storage-jabdrive
	code-howtos–remote-storage-sql
	code-howtos–remote-storage
	code-howtos–testing
	code-howtos–tools
	code-howtos–ui-recommendations
	code-howtos–xmp-parsing
	code-howtos
	contributing
	decisions–0000-use-markdown-architectural-decision-records
	decisions–0001-use-crowdin-for-translations
	decisions–0002-use-slf4j-for-logging
	decisions–0003-use-gradle-as-build-tool
	decisions–0004-use-mariadb-connector
	decisions–0005-fully-support-utf8-only-for-latex-files
	decisions–0006-only-translated-strings-in-language-file
	decisions–0007-human-readable-changelog
	decisions–0008-use-public-final-instead-of-getters
	decisions–0009-use-plain-junit5-for-testing
	decisions–0010-use-h2-as-internal-database
	decisions–0011-test-external-links-in-documentation
	decisions–0012-handle-different-bibEntry-formats-of-fetchers
	decisions–0013-add-native-support-biblatex-software
	decisions–0014-separate-URL-creation-to-enable-proper-logging
	decisions–0015-support-an-abstract-query-syntax-for-query-conversion
	decisions–0016-mutable-preferences-objects
	decisions–0017-allow-model-access-logic
	decisions–0018-use-regular-expression-to-split-multiple-sentence-titles
	decisions–0019-implement-special-fields-as-separate-fields
	decisions–0020-use-Jackson-to-parse-study-yml
	decisions–0021-keep-study-as-a-dto
	decisions–0022-remove-stop-words-during-query-transformation
	decisions–0023-localized-preferences
	decisions–0025-reviewdog-reviews
	decisions–0026-use-jna-to-determine-default-directory
	decisions–0027-synchronization
	decisions–0028-http-return-bibtex-string
	decisions–0029-cff-export-multiple-entries
	decisions–0030-use-apache-commons-io-for-directory-monitoring
	decisions–0031-use-current-tab-for-deciding-style-type-for-oo
	decisions–0032-store-chats-in-local-user-folder
	decisions–0033-store-chats-in-mvstore
	decisions–0034-use-citation-key-for-grouping-chat-messages
	decisions–0035-generate-embeddings-online
	decisions–0036-use-textarea-for-chat-content
	decisions–0037-rag-architecture-implementation
	decisions–0038-use-entryId-for-bibentries
	decisions–0039-use-apache-velocity-as-template-engine
	decisions–0040-display-front-cover-in-preview-tab
	decisions–0041-use-one-form-for-singular-and-plural
	decisions–0042-use-webview-for-summarization-content
	decisions–0043-show-merge-dialog-when-importing-a-single-pdf
	decisions–adr-template
	decisions
	getting-into-the-code–development-strategy
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–eclipse
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–intellij-11-code-into-ide
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–intellij-12-build
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–intellij-13-code-style
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–intellij-89-run-with-intellij
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–pre-01-github-account
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–pre-02-software
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–pre-03-code
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–trouble-shooting
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace–vscode
	getting-into-the-code–guidelines-for-setting-up-a-local-workspace
	getting-into-the-code–high-level-documentation
	getting-into-the-code
	requirements–ai
	requirements
	teaching

